Attachment A - Scope of Work ## Scope of Work The following section outlines the scope of work completed in regards to the LID Demonstration Projects in accordance with the Work Plan as established in consultation with the City of Ottawa. The established Work Plan has been organized into three (3) distinct phases that are detailed below. It is acknowledged that the work plan will be subject to refinement as part of the review and consultation process with the City and the SWM Working Group. Phase 1 – Development of Existing Conditions Report and LID Demonstration Project Scoping Document. Phase 2 - Modelling and Interim Review of Draft Preliminary Design "Demonstration Plan" and includes the following sub-tasks: - LID Demonstration Plan targets and criteria (water quality, erosion, flood control and infiltration) - § Targets for LID Demonstration Plan lot-level controls in regards to the ultimate land- - uses (i.e. residential vs. employment uses) - § Targets LID Demonstration Plan for conveyance controls - § Targets for LID Demonstration Plan end-of-pipe controls to be potentially implemented in future phases based on monitoring results. - Model selection and agreement on model parameters/inputs for the LID Demonstration Project in consultation with the SWM Working Group - Modelling, results, analysis and reporting - Operations & Maintenance and Assumption Protocols - § Potential LID operations and maintenance considerations, typical requirements and expected costs. - § Recommended LID assumption protocols - Strategies for subsequent phases and demonstration plans - Implications for CDP Phase 3 - Preliminary Design for LID Demonstration Project Phase 1 and includes the following sub-tasks: - o Final Review of Preliminary Design - CDP Recommendations - Implementation recommendations including but not limited to: - Monitoring program recommendations based on project objectives and targets developed from Stage 1 - LID Demonstration Project reporting requirements - Process (feedback process) whereby monitoring results are used to inform/refine future LID phases and used to refine modelling assumptions and SWM credits. ## Phase 2 – Specifics The following section provides greater detail in regards to the specific activities completed in the satisfaction of Phase 2 of the Work Plan. ## 1. Infiltration Testing Infiltration testing of surficial soils will be completed to carry out the LID feasibility analysis and future design. The proposed Work Plan is based on borehole and test pit logs completed by DST. The in-situ infiltration testing is required for all infiltration-based LID designs and must be used to confirm and to refine the coarse estimates performed as part of the geotechnical assessment. The testing is required to determine the infiltration capacity of site specific soils, to design appropriate sizes of each facility, to determine if underdrains are required and to locate any drains within the facility crosssection. These data will allow an accurate forecast of post-development performance. In-situ soil testing will be a combination of: Guelph Permeameter Testing apparatus and protocols to determine the in-situ saturated hydraulic conductivity and the design infiltration rate as per the LID Stormwater Planning and Design Guide Version 1.0 (TRCA/CVC 2010). Testing locations will be targeted to the proposed footprint of the infiltration facilities as required. Approximately 22 locations are proposed for sampling. Double Ring Infiltrometer to provide an infiltration rate of shallow soils at the existing land surface, at the likely interface of the proposed grade raise, to account for the effects of micro-tubules, rootlets and other macropores. A total of 6 tests are anticipated. #### 2. Water Balance Model The development of a water balance model for the Former CFB Rockcliffe CDP site will be completed using EPA-SWMM software, and will be based on the completed geotechnical and hydrogeological reports. The model will be developed such that future (Stage 2 and beyond) LID options can be assessed in terms of flow reductions (water quantity and erosion), water quality, and infiltration. The model results will be utilized to develop LID SWM targets. It is assumed that the model would include Phases 1-3 of the Rockcliffe Development. The water balance assessment of the study area will analyze pre- and post-development hydrology and carry out an impact assessment using the following two methods: - Assessment of the hydrologic regime: long term hydrologic modeling to assess the overall hydrology of the study area, - Assessment of Infiltration Deficit: specific assessment for estimating the difference between water infiltrated into the ground under pre- and postdevelopment conditions. - 2.1 Assessment of the Hydrologic Regime Long term hydrologic modeling for pre- and post-development conditions will be carried out to define general hydrologic processes, specifically surface runoff hydrology (flow rate and runoff volume) and infiltration and evaporation volumes. Since observed streamflow data are not available to calibrate and validate the hydrologic model, the model will not be calibrated. However, available background information from the study area, in addition to previous modeling experience under similar conditions, will be used to refine the results as appropriate. To develop the long term hydrologic model, a continuous precipitation and air temperature record has been gathered and will be applied. The EPA SWMM model was used as a modeling platform. Developed by the U.S. Environmental Protection Agency (EPA); the EPA SWMM model and its variants (XPSWMM, PCSWMM, InfoSWMM) is a widely used model that is well suited for urban and rural areas, as it performs water quality, quantity and water balance assessments suitable for LID simulations. The model was successfully applied by Aquafor as part of subwatershed studies, stormwater management master plans, and site-based LID modeling and analysis. #### 2.2 Assessment of Infiltration Deficit The assessment of the impact of development on infiltration to the ground will be done in accordance with Hydrogeological Assessment Submissions-Conservation Authority Guidelines (June, 2013). Accordingly, the following activities will be undertaken: - a) Collect climate data (air temperature), soils data (soil types and hydraulic conductivity), and land use data (imperviousness and land cover) for the study area; - Estimate the evapotranspiration component of the hydrologic regime for the Study Area using Thornthwaite (1948) and available climate data, and calculate total water surplus; - Define catchment area/Management Unit area, including imperviousness, land cover, and runoff coefficient under pre- and post-development conditions; - d) Pre-development assessment: Estimate inputs (including precipitation, run-on and other inputs) and outputs (including evapotranspiration, infiltration, and surface runoff). - e) Post-development assessment: Estimate inputs and outputs. - f) Estimate the output volume deficit between pre- and post-development (i.e. changes in hydrologic output volumes between pre- and postdevelopment scenarios). For the assessment of infiltration deficit, water balance spreadsheets (Microsoft Excel) will be used, and output volumes will be estimated using imperviousness values and other physical parameters deemed to change under post-development conditions for different land uses and catchment areas. - 3. Stream Erosion Assessment The erosion assessment scenarios would include the following: - a) Pre-development conditions scenario - b) Post-development conditions scenario (including all proposed development) without SWM control - c) Post-development conditions scenario (including all proposed development) with SWM control In order to run these scenarios, a long term hydrologic model will be carried out and statistical analyses will be done to estimate the change in time of exceedance (flow duration analysis) for storm events with different frequencies under pre- and post-development conditions. The flow regimes (magnitudes and frequencies) will be analyzed under pre- and post-development conditions, and comparative results will be presented in figures and tables for the two flow regimes. Moreover, the 2-year storm event, which is generally linked to bankfull flows responsible for sediment removal and channel maintenance, will be analyzed under pre- and post-development conditions (in addition to post-development with SWM control conditions). All relevant pond design information (including size, surface area, and control structures) will be included in the model. It should be noted that the hydraulic assessment of stream erosion under preand post-development conditions will not be included at this stage. More specifically, developing a hydraulic model (HEC-RAS) for the two streams should be a subsequent step (see Step 5) that would use the hydrologic model input to investigate hydraulic variables including shear stress, velocity, and water depth along the two streams. Accordingly, key locations such as downstream of culverts and the potential impact of increasing flows on channel stability would be further investigated and analyzed. - 4. Hydraulic Model Development A detailed hydraulic modelling of the Eastern and Western tributaries will be developed to facilitate stream rehabilitation assessments and designs using the HEC-RAS modelling software. - Operations & Maintenance and Assumption Protocols The completed tasks will be completed in parallel to the MSS including but not limited to: - a) Potential LID operations and maintenance considerations, typical requirements and expected costs. - b) Recommended LID assumption protocols - 6. Strategies for Subsequent Phases and Demonstration PlansIn consultation with the City of Ottawa and the SWM Working Group strategies for each the SWM Working Group strategies for each subsequent phase of development and servicing
will be developed including plans for subsequent phases of the LID Demonstration Project Phase 3 - Specifics In the fulfillment of Phase 3 of the Work Plan, the following tasks were completed. - 1. Development of Typical LID Details Following the selection of the preferred LID controls for each land-use, typical LID design details will be prepared (i.e. preliminary design) in support of the CDP. LID Preliminary concepts will include: - a) Location of proposed LID, - b) Types of LIDs, - c) Targets and design criteria, - d) Anticipated performance of LIDs determined through modelling using the previously developed EPA-SWMM model (Phase 2). ### 2. LID Recommendations At the conclusion of Phase 3, a comprehensive document will be prepared which will detail the results of Work Plan (Phases 1-3) and will conclude with implementation recommendations including but not limited to: - a) By-law considerations - b) Construction sequencing recommendations, protocols and erosion and sediment control requirements. - c) Reporting considerations for privately owned facilities - d) Assumption, operation and maintenance protocols (typical tasks, frequency and responsible party) - e) Inspection recommendations - f) Monitoring program recommendations based on project objectives and targets developed from Phase 2 - g) LID demonstration project reporting requirements - h) Adaptive Management Process (feedback process) whereby monitoring results are used to inform/refine future LID phases and used to refine modelling assumptions and SWM credits. Aquafor Beech Ltd. February, 2015 Attachment B – Hydrologic Model (Pre-Development) ``` EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **************** Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ****** Rainfall File Summary ******* Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. AUG-08-1996 DEC-31-2013 60 min 28488 Depth ******* Volume Runoff Quantity Continuity hectare-m mm ***** ****** Volume Volume 10^6 ltr Flow Routing Continuity hectare-m Dry Weather Inflow 0.000 0.000 992.447 9924.573 Wet Weather Inflow Groundwater Inflow 0.000 0.000 0.000 0.000 RDII Inflow 0.000 External Inflow 0.000 984.057 9840.669 External Outflow 9.336 93.357 Internal Outflow Storage Losses Initial Stored Volume 0.000 0.000 Final Stored Volume Final Stored Volume 0.000 Continuity Error (%) -0.095 ``` ********* All links are stable. Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.01 | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 15454.66 | 0.00 | 423.97 | 12215.04 | 2853.71 | 410.37 | 1.14 | 0.185 | | EXT2 | 15454.66 | 0.00 | 978.90 | 7619.12 | 6939.50 | 204.72 | 0.28 | 0.449 | | BRSWM1 | 15454.66 | 0.00 | 1059.20 | 7627.17 | 6853.37 | 723.72 | 1.00 | 0.443 | | BRSWM2 | 15454.66 | 19250.81 | 1707.07 | 8318.19 | 24837.39 | 1515.09 | 2.10 | 0.716 | | BRSWM3 | 15454.66 | 0.00 | 1176.44 | 7019.39 | 7348.56 | 1174.31 | 1.53 | 0.475 | | EXT3 | 15454.66 | 0.00 | 429.51 | 12219.06 | 2843.68 | 522.96 | 1.42 | 0.184 | | EXTW | 15454.66 | 0.00 | 225.91 | 13801.71 | 1446.36 | 266.28 | 0.88 | 0.094 | | EXN | 15454.66 | 0.00 | 830.11 | 9724.26 | 4969.94 | 1806.09 | 3.42 | 0.322 | | EXTN | 15454.66 | 0.00 | 292.53 | 13568.94 | 1625.97 | 387.31 | 1.79 | 0.105 | | EXW1 | 15454.66 | 4003.33 | 1239.31 | 9215.03 | 9082.42 | 6730.11 | 10.83 | 0.467 | | LIDPilot | 15454.66 | 0.00 | 454.98 | 12239.70 | 2796.35 | 324.38 | 0.74 | 0.181 | ****************** Node Depth Summary | Node | Туре | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | Occu | of Max
errence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------| | 2 | JUNCTION | 0.02 | 0.70 | 1.00 | 7 | 14:30 | | 1 | JUNCTION | 0.02 | 0.70 | 1.70 | 7 | 14:23 | | 5 | JUNCTION | 0.00 | 0.31 | 5.31 | 3623 | 17:00 | | 6 | JUNCTION | 0.00 | 0.39 | 3.39 | 3623 | 17:00 | | WesternOutfall | OUTFALL | 0.01 | 0.64 | 0.64 | 3653 | 22:00 | | EasternOutfall | OUTFALL | 0.00 | 0.39 | 1.39 | 3623 | 17:00 | | Type | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | 0ccur: | rence | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | |---|---|--|--|----------------------------------|---|--| | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL | 0.883
12.679
3.416
1.788
0.000 | 5.521
12.679
3.416
5.205
5.520 | 3623
3623
3623
3653 | 17:00
17:00
17:00
22:00 | 266.277
7464.858
1806.085
387.307
0.000 | 7647.375
7464.858
1806.085
2193.094
7647.500 | | OUTFALL | 0.000 | 5.192 | 3623 | 17:00 | 0.000 | 2193.124 | | | JUNCTION
JUNCTION
JUNCTION
JUNCTION
OUTFALL | Lateral Inflow CMS JUNCTION 0.883 JUNCTION 12.679 JUNCTION 3.416 JUNCTION 1.788 OUTFALL 0.000 | Lateral Inflow Inflow CMS Total Inflow Inflow CMS JUNCTION 0.883 JUNCTION 12.679 JUNCTION 3.416 JUNCTION 1.788 JUNCTION 1.788 JUNCTION 0.000 5.520 | Lateral Total Time o | Lateral Total Time of Max Inflow Inflow Occurrence Occurrence CMS CMS days hr:min | Lateral Total Time of Max Inflow Inflow Occurrence Inflow Volume 10^6 ltr Type CMS CMS days hr:min days hr:min 10^6 ltr JUNCTION 0.883 5.521 3653 22:00 266.277 JUNCTION 12.679 12.679 3623 17:00 7464.858 JUNCTION 3.416 3.416 3623 17:00 1806.085 JUNCTION 1.788 5.205 3623 17:00 387.307 OUTFALL 0.000 5.520 3653 22:00 0.000 | Surcharging occurs when water rises above the top of the highest conduit. | Node | Туре | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |------|----------------------|---------------------|--------------------------------------|-----------------------------------| | 2 | JUNCTION
JUNCTION | 8.94
10.19 | 0.000 | 0.000 | Flooding refers to all water that overflows a node, whether it ponds or not. | Node | Hours
Flooded | Maximum
Rate
CMS | Time of Max
Occurrence
days hr:min | Total
Flood
Volume
10^6 ltr | Maximum
Ponded
Volume
1000 m3 | |------|------------------|------------------------|--|--------------------------------------|--| | 1 | 10.19 | 8.009 | 3623 17:00 | 93.356 | 0.000 | | | Flow | Avg. | Max. | Total | |----------------|-------|-------|--------|-------------------| | | Freq. | Flow | Flow | Volume | | Outfall Node | Pcnt. | CMS | CMS | 10 ^ 6 ltr | | WesternOutfall | 27.64 | 0.050 | 5.520 | 7647.500 | | | | | | | | EasternOutfall | 20.36 | 0.020 | 5.192 | 2193.124 | | | | | | | | System | 24.00 | 0.070 | 10.512 | 9840.624 | | Link | Туре | Maximum
 Flow
CMS | Time of Occur days h | rence | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |----------------------|--------------------|--------------------------|----------------------|----------------|-----------------------------|----------------------|-----------------------| | Western2 Eastern1 | CHANNEL
CHANNEL | 5.520
3.418 | | 22:00
17:00 | 2.81
7.16 | 0.91
0.06 | 0.92
0.24 | | Eastern2
Western1 | CHANNEL
CHANNEL | 5.192
4.765 | | 17:00
15:59 | 8.04 | 0.09 | 0.30 | | Conduit | | Hours Full
Upstream | | Hours
Above Full
Normal Flow | | |----------|------|------------------------|------|------------------------------------|-------| | Western1 | 8.67 | 10.09 | 8.94 | 10.21 | 10.09 | Analysis begun on: Wed Feb 18 17:14:20 2015 Analysis ended on: Wed Feb 18 17:22:14 2015 Total elapsed time: 00:07:54 Page 4 SWMM 5 NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method
GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ******* Rainfall File Summary Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. 1 AUG-08-1996 DEC-31-2013 60 min 28488 0 | ******* | Volume | Depth | |----------------------------|-----------|-----------| | Runoff Quantity Continuity | hectare-m | mm | | ******* | | | | Total Precipitation | 3595.989 | 15454.656 | | Evaporation Loss | 170.899 | 734.482 | | Infiltration Loss | 2953.427 | 12693.086 | | Surface Runoff | 486.490 | 2090.810 | | Final Surface Storage | 0.040 | 0.171 | | Continuity Error (%) | -0.413 | | | | | | | ******* | Volume | Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ******* | | | | Dry Weather Inflow | 0.000 | 0.000 | Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 486.490 4864.948 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 0.000 0.000 External Outflow 482.152 4821.574 Internal Outflow 4.873 48.726 Storage Losses 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) -0.110 -0.110 Continuity Error (%) ******* Highest Flow Instability Indexes ********* All links are stable. ******** Routing Time Step Summary ****** Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 | | Total | Total | Total | Total | Total | Total | Peak | Runoff | |--------------|--------------|-------------|------------|-------------|--------------|--------------------|---------------|--------| | Subcatchment | Precip
mm | Runon
mm | Evap
mm | Infil
mm | Runoff
mm | Runoff
10^6 ltr | Runoff
CMS | Coeff | | EXT1 | 15454.66 | 0.00 | 610.19 | 12215.04 | 2687.48 | 386.46 | 1.14 | 0.174 | | EXT2 | 15454.66 | 0.00 | 1456.21 | 7619.12 | 6524.68 | 192.48 | 0.28 | 0.422 | | BRSWM1 | 15454.66 | 0.00 | 1514.30 | 7627.17 | 6434.81 | 679.52 | 1.00 | 0.416 | | BRSWM2 | 15454.66 | 16771.03 | 1630.25 | 14953.71 | 15836.52 | 966.03 | 2.01 | 0.491 | | BRSWM3 | 15454.66 | 0.00 | 1533.71 | 7630.58 | 6401.96 | 1023.04 | 1.50 | 0.414 | | EXT3 | 15454.66 | 0.00 | 614.36 | 12219.06 | 2676.97 | 492.30 | 1.42 | 0.173 | | EXW | 15454.66 | 2717.57 | 654.27 | 14247.23 | 3320.43 | 2847.29 | 9.11 | 0.183 | | EXTW | 15454.66 | 0.00 | 319.77 | 13801.71 | 1363.37 | 251.00 | 0.88 | 0.088 | | EXN | 15454.66 | 0.00 | 683.89 | 12049.48 | 2786.52 | 1012.63 | 3.13 | 0.180 | | EXTN | 15454.66 | 0.00 | 388.06 | 13569.49 | 1543.03 | 367.55 | 1.79 | 0.100 | | Node | Туре | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | Occi | of Max
urrence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------| | 2 | JUNCTION | 0.01 | 0.70 | 1.00 | 7 | 14:59 | | 1 | JUNCTION | 0.01 | 0.70 | 1.70 | 7 | 14:53 | | 5 | JUNCTION | 0.00 | 0.30 | 5.30 | 3623 | 17:00 | | 6 | JUNCTION | 0.00 | 0.38 | 3.38 | 3623 | 17:00 | | WesternOutfall | OUTFALL | 0.01 | 0.64 | 0.64 | 3653 | 22:00 | | EasternOutfall | OUTFALL | 0.00 | 0.38 | 1.38 | 3623 | 17:00 | | Node | Type | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | Time of Ma
Occurrence
days hr:m: | ce Volume | Total
Inflow
Volume
10^6 ltr | |----------------|----------|-------------------------------------|-----------------------------------|--|-------------|---------------------------------------| | 2 | JUNCTION | 0.883 | 5.521 | 3653 22: | 00 250.998 | 3441.516 | | 1 | JUNCTION | 10.224 | 10.224 | 3653 21:0 | 3233.750 | 3233.750 | | 5 | JUNCTION | 3.130 | 3.130 | 3623 17:0 | 00 1012.627 | 1012.627 | | 6 | JUNCTION | 1.788 | 4.915 | 3623 17: | 367.551 | 1379.962 | | WesternOutfall | OUTFALL | 0.000 | 5.520 | 3653 22: | 0.000 | 3441.605 | | EasternOutfall | OUTFALL | 0.000 | 4.911 | 3623 17:0 | 0.000 | 1379.947 | Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. | Node | Туре | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |--------|-------------------|---------------------|--------------------------------------|-----------------------------------| | 2
1 | JUNCTION JUNCTION | 5.53
5.90 | 0.000 | 0.000 | Flooding refers to all water that overflows a node, whether it ponds or not. Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Volume | Node | Flooded | CMS | days hr:min | 10 ^ 6 ltr | 1000 m3 | |------|---------|-------|-------------|-------------------|---------| | 1 | 5.90 | 5.578 | 3653 21:00 | 48.725 | 0.000 | Outfall Loading Summary ********* | Outfall Node | Flow | Avg. | Max. | Total | |----------------|-------|-------|--------|----------| | | Freq. | Flow | Flow | Volume | | | Pcnt. | CMS | CMS | 10^6 ltr | | WesternOutfall | 24.74 | 0.025 | 5.520 | 3441.605 | | EasternOutfall | 19.53 | 0.013 | 4.911 | 1379.947 | | System | 22.14 | 0.038 | 10.230 | 4821.552 | ****** Link Flow Summary | Link | Туре | Maximum
 Flow
CMS | 0ccu | of Max
rrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |-------------------------------------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------| | Western2 Eastern1 Eastern2 Western1 | CHANNEL | 5.520 | 3653 | 22:00 | 2.81 | 0.91 | 0.92 | | | CHANNEL | 3.128 | 3623 | 17:00 | 6.97 | 0.06 | 0.23 | | | CHANNEL | 4.911 | 3623 | 17:00 | 7.91 | 0.09 | 0.29 | | | CHANNEL | 4.763 | 2961 | 11:16 | 2.30 | 1.03 | 1.00 | Conduit Surcharge Summary | Conduit | | Hours Full
Upstream | | Hours
Above Full
Normal Flow | Hours
Capacity
Limited | |----------|------|------------------------|------|------------------------------------|------------------------------| | Western1 | 5.41 | 5.86 | 5.53 | 5.94 | 5.86 | Analysis begun on: Wed Feb 18 17:03:20 2015 Analysis ended on: Wed Feb 18 17:11:11 2015 Total elapsed time: 00:07:51 Page 3 SWMM 5 ``` EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **************** Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ****** Rainfall File Summary ******* Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. AUG-08-1996 DEC-31-2013 60 min 28488 Depth ******* Volume Runoff Quantity Continuity hectare-m mm Total Precipitation ... 3595.217 15454.656 Evaporation Loss ... 200.885 863.539 Infiltration Loss ... 2388.009 10265.265 Surface Runoff ... 1021.296 4390.215 Final Surface Storage 0.004 0.019 Continuity Error (%) -0.417 ****** Volume Volume 10^6 ltr Flow Routing Continuity hectare-m ********* Dry Weather Inflow 0.000 0.000 10213.064 Groundwater Inflow RDII Inflow 1021.296 0.000 0.000 0.000 0.000 RDII Inflow 0.000 External Inflow 0.000 0.000 1012.441 10124.514 9.813 98.132 0.000 0.000 External Outflow Internal Outflow Storage Losses 0.000 Initial Stored Volume 0.000 Final Stored Volume Continuity Error (%) 0.000 ``` ********* All links are stable. Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.01 | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 15454.66 | 0.00 | 423.97 | 12215.04 | 2853.71 | 410.37 | 1.14 | 0.185 | | EXT2 | 15454.66 | 0.00 | 978.90 | 7619.12 | 6939.50 | 204.72 | 0.28 | 0.449 | | BRSWM1 | 15454.66 | 0.00 | 1059.20 | 7627.17 | 6853.37 | 723.72 | 1.00 | 0.443 | | BRSWM2 | 15454.66 | 19250.81 | 1707.07 | 8318.19 | 24837.39 | 1515.09 | 2.10 | 0.716 | | BRSWM3 | 15454.66 | 0.00 | 1176.44 | 7019.39 | 7348.56 | 1174.31 | 1.53 | 0.475 | | EXT3 | 15454.66 | 0.00 | 429.51 | 12219.06 | 2843.68 | 522.96 | 1.42 | 0.184 | | EXTW | 15454.66 | 0.00 | 225.91 | 13801.71 | 1446.36 | 266.28 | 0.88 | 0.094 | | EXN | 15454.66 | 0.00 | 830.11 | 9724.26 | 4969.94 | 1806.09 | 3.42 | 0.322 | | EXTN | 15454.66 | 0.00 | 292.53 | 13568.94 | 1625.97 | 387.31 | 1.79 | 0.105 | | EXW1 | 15454.66 | 4003.33 | 1239.31 | 9215.03 | 9082.42 | 6730.11 | 10.83 | 0.467 | | LIDPilot | 15454.66 | 0.00 | 903.31 | 9327.81 | 5283.31 | 612.87 | 0.90 | 0.342 | | Node | Type | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | 0ccu | of Max
rrence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|----------------------------| | 2 | JUNCTION | 0.02 | 0.70 | 1.00 | 7 | 14:27 | | 1 | JUNCTION | 0.02 | 0.70 | 1.70 | 7 | 14:20 | | 5 | JUNCTION | 0.00 | 0.31 | 5.31 | 3623 | 17:00 | |
6 | JUNCTION | 0.00 | 0.39 | 3.39 | 3623 | 17:00 | | WesternOutfall | OUTFALL | 0.02 | 0.64 | 0.64 | 3653 | 22:00 | | EasternOutfall | OUTFALL | 0.00 | 0.39 | 1.39 | 3623 | 17:00 | | Node | Type | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | 0ccu | of Max
rrence
hr:min | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | |---------------------------------------|---|---|--|--|---|---|--| | 2 1 5 6 WesternOutfall EasternOutfall | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL | 0.883
12.871
3.416
1.788
0.000
0.000 | 5.521
12.871
3.416
5.205
5.520 | 3653
3623
3623
3623
3653
3623 | 22:00
17:00
17:00
17:00
22:00 | 266.277
7753.348
1806.085
387.307
0.000 | 7931.218
7753.348
1806.085
2193.094
7931.344
2193.124 | Surcharging occurs when water rises above the top of the highest conduit. | Node | Type | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |------|----------------------|---------------------|--------------------------------------|-----------------------------------| | 2 | JUNCTION
JUNCTION | 9.50
10.72 | 0.000 | 0.000 | Flooding refers to all water that overflows a node, whether it ponds or not. | Node | Hours
Flooded | Maximum
Rate
CMS | Time of Max
Occurrence
days hr:min | Total
Flood
Volume
10^6 ltr | Maximum
Ponded
Volume
1000 m3 | |------|------------------|------------------------|--|--------------------------------------|--| | 1 | 10.72 | 8.202 | 3623 17:00 | 98.132 | 0.000 | | | Flow
Freq. | Avg.
Flow | Max.
Flow | Total
Volume | |----------------------------------|----------------|----------------|----------------|----------------------| | Outfall Node | Pcnt. | CMS | CMS | 10 ^ 6 ltr | | WesternOutfall
EasternOutfall | 27.77
20.36 | 0.052
0.020 | 5.520
5.192 | 7931.344
2193.124 | | System | 24.07 | 0.072 | 10.512 | 10124.467 | | Link | Туре | Maximum
 Flow
CMS | 0ccu | of Max
rrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------| | Western2 | CHANNEL | 5.520 | 3653 | 22:00 | 2.81 | 0.91 | 0.92 | | Eastern1 | CHANNEL | 3.418 | 3623 | 17:00 | 7.16 | | 0.24 | | Eastern2 | CHANNEL | 5.192 | 3623 | 17:00 | 8.04 | 0.09 | 0.30 | | Western1 | CHANNEL | 4.765 | 5870 | 13:05 | 2.38 | 1.03 | | | Conduit | | Hours Full
Upstream | | Hours
Above Full
Normal Flow | | |----------|------|------------------------|------|------------------------------------|-------| | Western1 | 9.21 | 10.62 | 9.50 | 10.76 | 10.62 | Analysis begun on: Wed Feb 18 17:34:21 2015 Analysis ended on: Wed Feb 18 17:42:06 2015 Total elapsed time: 00:07:45 Page 4 SWMM 5 ``` EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **************** Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ****** Rainfall File Summary ******* Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. AUG-08-1996 DEC-31-2013 60 min 28488 Depth ******* Volume Runoff Quantity Continuity hectare-m mm ****** ****** Volume Volume 10^6 ltr Flow Routing Continuity hectare-m ********* Dry Weather Inflow 0.000 0.000 10153.517 Groundwater Inflow 1015.341 Groundwater Inflow 0.000 RDII Inflow 0.000 0.000 0.000 0.000 0.000 RDII Inflow External Inflow 0.000 0.000 1006.737 10067.471 External Outflow 9.529 95.291 0.000 Internal Outflow Storage Losses Initial Stored Volume 0.000 0.000 Final Stored Volume ``` Continuity Error (%) -0.091 All links are stable. ****** Routing Time Step Summary ***************************** Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.01 ******* Subcatchment Runoff Summary | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 15454.66 | 0.00 | 423.97 | 12215.04 | 2853.71 | 410.37 | 1.14 | 0.185 | | EXT2 | 15454.66 | 0.00 | 978.90 | 7619.12 | 6939.50 | 204.72 | 0.28 | 0.449 | | BRSWM1 | 15454.66 | 0.00 | 1059.20 | 7627.17 | 6853.37 | 723.72 | 1.00 | 0.443 | | BRSWM2 | 15454.66 | 19250.81 | 1707.07 | 8318.19 | 24837.39 | 1515.09 | 2.10 | 0.716 | | BRSWM3 | 15454.66 | 0.00 | 1176.44 | 7019.39 | 7348.56 | 1174.31 | 1.53 | 0.475 | | EXT3 | 15454.66 | 0.00 | 429.51 | 12219.06 | 2843.68 | 522.96 | 1.42 | 0.184 | | EXW | 15454.66 | 3459.44 | 1205.38 | 9288.93 | 8493.75 | 7283.44 | 11.57 | 0.449 | | EXTW | 15454.66 | 0.00 | 225.91 | 13801.71 | 1446.36 | 266.28 | 0.88 | 0.094 | | EXN | 15454.66 | 0.00 | 829.88 | 9724.21 | 4969.94 | 1806.09 | 3.42 | 0.322 | | EXTN | 15454.66 | 0.00 | 292.64 | 13568.83 | 1625.97 | 387.31 | 1.79 | 0.105 | ****** Node Depth Summary | Node | Type | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | 0ccu | of Max
rrence
hr:min | |----------------------------------|---|------------------------------|------------------------------|------------------------------|--------------------------------|---| | 2
1
5
6 | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL | 0.02
0.02
0.00
0.00 | 0.70
0.70
0.31
0.39 | 1.00
1.70
5.31
3.39 | 7
7
3623
3623
3653 | 14:28
14:21
17:00
17:00
22:00 | | WesternOutfall
EasternOutfall | OUTFALL | 0.02 | 0.64 | 1.39 | 3623 | 17:00 | Node Inflow Summary ******** | Node | Туре | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | 0ccu | of Max
rrence
hr:min | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | |----------------|----------------------------|-------------------------------------|-----------------------------------|------|----------------------------|---|---------------------------------------| | 2 | JUNCTION JUNCTION JUNCTION | 0.883 | 5.521 | 3653 | 22:00 | 266.277 | 7874.177 | | 1 | | 12.708 | 12.708 | 3623 | 17:00 | 7693.802 | 7693.802 | | 5 | | 3.416 | 3.416 | 3623 | 17:00 | 1806.085 | 1806.085 | | 6 | JUNCTION | 1.788 | 5.205 | 3623 | 17:00 | 387.307 | 2193.094 | | WesternOutfall | OUTFALL | 0.000 | 5.520 | 3653 | 22:00 | 0.000 | 7874.302 | | EasternOutfall | OUTFALL | 0.000 | 5.192 | 3623 | 17:00 | 0.000 | 2193.124 | ****** Page 2 SWMM 5 # Node Surcharge Summary ********* Surcharging occurs when water rises above the top of the highest conduit. | Node | Туре | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |------|----------------------|---------------------|--------------------------------------|-----------------------------------| | 2 | JUNCTION
JUNCTION | 9.21
10.44 | 0.000 | 0.000 | Node Flooding Summary Flooding refers to all water that overflows a node, whether it ponds or not. | Node | Hours
Flooded | Maximum
Rate
CMS | Time of Max
Occurrence
days hr:min | Total
Flood
Volume
10^6 ltr | Maximum
Ponded
Volume
1000 m3 | |------|------------------|------------------------|--|--------------------------------------|--| | 1 | 10.44 | 8.038 | 3623 17:00 | 95.291 | 0.000 | | Outfall Node | Flow | Avg. | Max. | Total | |----------------|-------|-------|--------|-----------| | | Freq. | Flow | Flow | Volume | | | Pcnt. | CMS | CMS | 10^6 ltr | | WesternOutfall | 28.06 | 0.051 | 5.520 | 7874.302 | | EasternOutfall | 20.36 | 0.020 | 5.192 | 2193.124 | | System | 24.21 | 0.071 | 10.512 | 10067.425 | | Link | Type | Maximum
 Flow
CMS | 0ccu | of Max
rrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------| | Western2 | CHANNEL | 5.520 | 3653 | 22:00 | 2.81 | 0.91 | 0.92 | | Eastern1 | CHANNEL | 3.418 | 3623 | 17:00 | 7.16 | 0.06 | 0.24 | | Eastern2 | CHANNEL | 5.192 | 3623 | 17:00 | 8.04 | 0.09 | 0.30 | | Western1 | CHANNEL | 4.766 | 5870 | 12:51 | 2.38 | 1.03 | 1.00 | | Conduit | | Hours Full
Upstream | | Hours
Above Full
Normal Flow | | |----------|------
------------------------|------|------------------------------------|-------| | Western1 | 8.92 | 10.34 | 9.21 | 10.49 | 10.34 | Analysis begun on: Wed Feb 18 17:24:27 2015 Analysis ended on: Wed Feb 18 17:32:12 2015 Total elapsed time: 00:07:45 Attachment D- Hydrologic Model (Post Development LID Control) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ****** Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO ${\tt Groundwater}~\dots {\tt NO}$ Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ******* Element Count Number of rain gages 1 Number of subcatchments ... 11 Number of nodes 6 Number of links 4 Number of pollutants 0 Number of land uses 0 ****** Raingage Summary Data Recording Type Interval Data Source C:\Users\Ashraf\Desktop\CLC\Climate data\RainfallData_101ROPEC_24Sept14.dat ****** Subcatchment Summary ************ | Name | Area | Width | %Imperv | %Slope | Rain Gage | Outlet | | |----------|-------|---------|---------|--------|-----------|--------|--| | EXT1 | 14.38 | 2000.00 | 20.00 | 2.0000 | 1 |
1 | | | EXT2 | 2.95 | 2000.00 | 50.00 | 2.0000 | 1 | EXW1 | | | BRSWM1 | 10.56 | 2000.00 | 50.00 | 2.0000 | 1 | EXW1 | | | BRSWM2 | 6.10 | 2000.00 | 74.00 | 2.0000 | 1 | EXW1 | | | BRSWM3 | 15.98 | 2000.00 | 54.00 | 2.0000 | 1 | BRSWM2 | | | EXT3 | 18.39 | 2043.00 | 20.00 | 2.0000 | 1 | EXW1 | | | EXTW | 18.41 | 1473.00 | 10.00 | 2.0000 | 1 | 2 | | | EXN | 36.34 | 3028.00 | 35.40 | 2.0000 | 1 | 5 | | | EXTN | 23.82 | 2382.00 | 10.00 | 2.0000 | 1 | 6 | | | EXW1 | 74.10 | 3920.00 | 51.50 | 2.0000 | 1 | 1 | | | LIDPilot | 11.60 | 500.00 | 39.00 | 2.0000 | 1 | 1 | | ****** LID Control Summary | Subcatchment | LID Control | No. of
Units | Unit
Area | Unit
Width | % Area
Covered | % Imperv
Treated | |--------------|----------------|-----------------|--------------|---------------|-------------------|---------------------| | LIDPilot | Bioswale | 5 | 250.00 | 6.00 | 1.08 | 15.00 | | LIDPilot | VegetatedSwale | 5 | 250.00 | 6.00 | 1.08 | 15.00 | Node Summary SWMM 5 | Node Summary | | | | | | | | | |------------------------|----------------|------------------|-------------------|------------------|----------------|---------------|--------------------|---------------| | Name | T | Ype | Inver
Elev | | ax. P
pth | onded
Area | External
Inflow | | |
2 | | UNCTION | 0.3 | 0 0 |
.70 | 0.0 | | | | 1 | | UNCTION | 1.0 | 0 0 | .70 | 0.0 | | | | 5
6 | | UNCTION | 5.0
3.0 | | .30 | 0.0 | | | | WesternOutfal | _ | UTFALL | 0.0 | | .70 | 0.0 | | | | EasternOutfal | 1 0 | UTFALL | 1.0 | 0 1 | .30 | 0.0 | | | | ***** | | | | | | | | | | Link Summary | | | | | | | | | | Name | From | Node | To Node | Туре | | Length | %Slope | Roughness | |
Western2 | 2 | |
WesternOutfal | 1 CONDU |
тт | 100.0 | 0.3000 | 0.0100 | | Eastern1 | 5 | | 6 | CONDU | | 50.0 | | 0.0100 | | Eastern2 | 6
1 | | EasternOutfal | | | 50.0 | | 0.0100 | | Westernl | 1 | | 2 | CONDU | 11 | 400.0 | 0.1750 | 0.0100 | | ***** | ***** | | | | | | | | | Cross Section | | | | | | | | | | Conduit | Shap | pe | Full
Depth | Full
Area | Hyd.
Rad. | Max.
Width | No. of
Barrels | Full
Flow | | Western2 | West | ern2 | 0.70 | 2.35 | 0.32 | 7.00 | 1 | 6.07 | | Eastern1 | | ern1 | 1.30 | 4.00 | 0.59 | 6.00 | 1 | 56.19 | | Eastern2
Western1 | | ern2
ern1 | 1.30
0.70 | 4.00
2.35 | 0.59 | 6.00
7.00 | 1
1 | 56.19
4.64 | | Transect Summ ******* | | | | | | | | | | Transect West
Area: | ern1 | | | | | | | | | | .0008 | 0.0033 | 0.0075 | 0.0133 | 0.020 | | | | | | .0300 | 0.0409
0.1057 | 0.0529
0.1200 | 0.0654
0.1347 | 0.078
0.149 | | | | | 0 | .1655 | 0.1816 | 0.1981 | 0.2151 | 0.232 | :5 | | | | | .2504 | 0.2687
0.3668 | 0.2874
0.3878 | 0.3066
0.4092 | 0.326
0.431 | | | | | | .4534 | 0.4761 | 0.4993 | 0.5230 | 0.547 | | | | | | .5716 | 0.5966 | 0.6220 | 0.6478 | 0.674 | | | | | | .7009
.8488 | 0.7281
0.8837 | 0.7558
0.9205 | 0.7848
0.9593 | 0.815
1.000 | | | | | Hrad: | | | | | | | | | | | .0214 | 0.0428
0.1499 | 0.0643
0.1840 | 0.0857
0.2191 | 0.107 | | | | | | .2862 | 0.1499 | 0.1840 | 0.2191 | 0.410 | | | | | 0 | .4400 | 0.4689 | 0.4973 | 0.5253 | 0.552 | 19 | | | | | .5801
.7111 | 0.6069
0.7365 | 0.6334
0.7617 | 0.6596
0.7867 | 0.685
0.811 | | | | | | .8360 | 0.7363 | 0.8845 | 0.7867 | 0.932 | | | | | 0 | .9563 | 0.9799 | 1.0034 | 1.0268 | 1.050 | 0 | | | | | .0732 | 1.0962
1.1093 | 1.1156
1.1090 | 1.1135
1.1093 | 1.111 | | | | | Width: | | | | | | | | | | | .0400 | 0.0800 | 0.1200 | 0.1600 | 0.200 | | | | | | .2400 | 0.2800
0.3375 | 0.2949
0.3482 | 0.3055
0.3589 | 0.316 | | | | | 0 | .3802 | 0.3909 | 0.4015 | 0.4122 | 0.422 | 19 | | | | | .4335 | 0.4442
0.4975 | 0.4549
0.5082 | 0.4655
0.5189 | 0.476
0.529 | | | | | | .5402 | 0.4975 | 0.5082 | 0.5189 | 0.529 | | | | | 0 | .5935 | 0.6042 | 0.6149 | 0.6255 | 0.636 | 2 | | | | | .6469
.8133 | 0.6575
0.8600 | 0.6733
0.9067 | 0.7200
0.9533 | 0.766
1.000 | | | | | Transect West | | | | | | | | | | Area: | .0008 | 0.0033 | 0.0075 | 0.0133 | 0.020 | 9 | | | | | .0300 | 0.0409 | 0.0529 | 0.0654 | 0.078 | | | | | | .0918
.1655 | 0.1057
0.1816 | 0.1200
0.1981 | 0.1347
0.2151 | 0.149
0.232 | | | | | WMM 5 | | 0.1010 | 0.1701 | · | 0.232 | | | | Page 2 | Hrad: | 0.2504
0.3463
0.4534
0.5716
0.7009
0.8488 | 0.2687
0.3668
0.4761
0.5966
0.7281
0.8837 | 0.2874
0.3878
0.4993
0.6220
0.7558
0.9205 | 0.3066
0.4092
0.5230
0.6478
0.7848
0.9593 | 0.3262
0.4311
0.5471
0.6742
0.8158
1.0000 | |-------------------|--|--|--|--|--| | Width: | 0.0214
0.1285
0.2862
0.4400
0.5801
0.7111
0.8360
0.9563
1.0732
1.1103 | 0.0428
0.1499
0.3183
0.4689
0.6069
0.7365
0.8603
0.9799
1.0962
1.1093 | 0.0643
0.1840
0.3497
0.4973
0.6334
0.7617
0.8845
1.0034
1.1156
1.1090 | 0.0857
0.2191
0.3804
0.5253
0.6596
0.7867
0.9086
1.0268
1.1135
1.1093 | 0.1071
0.2531
0.4105
0.5529
0.6855
0.8114
0.9325
1.0500
1.1117
1.0000 | | widen. | 0.0400
0.2400
0.3269
0.3802
0.4335
0.4869
0.5402
0.5935
0.6469
0.8133 | 0.0800
0.2800
0.3375
0.3909
0.4442
0.4975
0.5509
0.6042
0.6575
0.8600 | 0.1200
0.2949
0.3482
0.4015
0.4549
0.5082
0.5615
0.6149
0.6733
0.9067 | 0.1600
0.3055
0.3589
0.4122
0.4655
0.5189
0.5722
0.6255
0.7200
0.9533 | 0.2000
0.3162
0.3695
0.4229
0.4762
0.5295
0.5829
0.6362
0.7667
1.0000 | | Transect
Area: | Easternl | | | | | | Hrad: | 0.0068
0.0491
0.1056
0.1761
0.2607
0.3591
0.4697
0.5923
0.7271
0.8739 | 0.0141
0.0593
0.1186
0.1919
0.2793
0.3802
0.4932
0.6183
0.7555
0.9047 | 0.0220
0.0700
0.1321
0.2083
0.2985
0.4019
0.5173
0.6448
0.7843
0.9360 | 0.0305
0.0813
0.1462
0.2252
0.3182
0.4240
0.5418
0.6717
0.8137
0.9677 | 0.0395
0.0932
0.1609
0.2427
0.3384
0.4466
0.5668
0.6991
0.8435
1.0000 | | пгац. | 0.0417 | 0.0796 | 0.1145 | 0.1472 | 0.1779 | | Width: | 0.2072
0.3387
0.4558
0.5656
0.6761
0.7853
0.8908
0.9934
1.0939 | 0.2353
0.3629
0.4782
0.5870
0.6983
0.8067
0.9115
1.0137 | 0.2623
0.3867
0.5004
0.6082
0.7203
0.8279
0.9321
1.0338
1.1337 | 0.2884
0.4101
0.5223
0.6310
0.7422
0.8490
0.9526
1.0539
1.1535 | 0.3139
0.4331
0.5440
0.6536
0.7638
0.8699
0.9731
1.0740 | | widdii. | 0.1811 | 0.1956 | 0.2100 | 0.2244 | 0.2389 | | | 0.2533
0.3256
0.3978
0.4700
0.5362
0.5981
0.6600
0.7219
0.7838 | 0.2678
0.3400
0.4122
0.4844
0.5486
0.6105
0.6724
0.7343
0.7962 | 0.2822
0.3544
0.4267
0.4989
0.5610
0.6229
0.6848
0.7467
0.8086 | 0.2967
0.3689
0.4411
0.5114
0.5733
0.6352
0.6971
0.7590
0.8210 | 0.3111
0.3833
0.4556
0.5238
0.5857
0.6476
0.7095
0.7714
1.0000 | | Transect | Eastern2 | | | | | | Area: | 0.0068
0.0491
0.1056
0.1761
0.2607
0.3591
0.4697
0.5923
0.7271
0.8739 | 0.0141
0.0593
0.1186
0.1919
0.2793
0.3802
0.4932
0.6183
0.7555
0.9047 | 0.0220
0.0700
0.1321
0.2083
0.2985
0.4019
0.5173
0.6448
0.7843
0.9360 | 0.0305
0.0813
0.1462
0.2252
0.3182
0.4240
0.5418
0.6717
0.8137
0.9677 | 0.0395
0.0932
0.1609
0.2427
0.3384
0.4466
0.5668
0.6991
0.8435 | | Hrad: | 0.0417
0.2072
0.3387
0.4558
0.5656 | 0.0796
0.2353
0.3629
0.4782
0.5870 | 0.1145
0.2623
0.3867
0.5004
0.6082 | 0.1472
0.2884
0.4101
0.5223
0.6310 |
0.1779
0.3139
0.4331
0.5440
0.6536 | | ` | | | | | | | Width:
Transect
Area: | 0.6761
0.7853
0.8908
0.9934
1.0939
0.1811
0.2533
0.3256
0.3978
0.4700
0.5362
0.5981
0.6600
0.7219
0.7838
Western
0.0008
0.0300
0.0918
0.1655 | 0.6983
0.8067
0.9115
1.0137
1.1138
0.1956
0.2678
0.3400
0.4122
0.4844
0.5486
0.6105
0.6724
0.7343
0.7962 | 0.7203
0.8279
0.9321
1.0338
1.1337
0.2100
0.2822
0.3544
0.4267
0.4989
0.5610
0.6229
0.6848
0.7467
0.8086 | 0.8
0.9
1.0
1.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 | 535
244
967
689
411
114
733
352
971
590
210 | 0.7638
0.8699
0.9731
1.0740
1.0000
0.2389
0.3111
0.3833
0.4556
0.5238
0.5857
0.6476
0.7095
0.7714
1.0000
0.0209
0.0784
0.1499
0.2325 | | |--|---|--|--|---|---|--|---------------------| | | 0.2504
0.3463
0.4534
0.5716
0.7009 | 0.2687
0.3668
0.4761
0.5966
0.7281 | 0.2874
0.3878
0.4993
0.6220
0.7558 | 0.4
0.5
0.6
0.7 | 066
092
230
478
848 | 0.3262
0.4311
0.5471
0.6742
0.8158 | | | Hrad: | 0.8488
0.0214
0.1285
0.2862
0.4400
0.5801
0.7111
0.8360
0.9563
1.0732
1.1103 | 0.8837
0.0428
0.1499
0.3183
0.4689
0.6069
0.7365
0.8603
0.9799
1.0962
1.1093 | 0.9205
0.0643
0.1840
0.3497
0.6334
0.7617
0.8845
1.0034
1.1156
1.1090 | 0.0
0.2
0.3
0.5
0.6
0.7
0.9
1.0 | | 1.0000
0.1071
0.2531
0.4105
0.5529
0.6855
0.8114
0.9325
1.0500
1.1117
1.0000 | | | Width: | 0.0400
0.2400
0.3269
0.3802
0.4335
0.4869
0.5402
0.5935
0.6469
0.8133 | 0.0800
0.2800
0.3375
0.3909
0.4442
0.4975
0.5509
0.6042
0.6575
0.8600 | 0.1200
0.2949
0.3482
0.4015
0.4549
0.5082
0.5615
0.6149
0.6733
0.9067 | 0.3
0.3
0.4
0.4
0.5
0.5 | 600
055
589
122
655
189
722
255
200
533 | 0.2000
0.3162
0.3695
0.4229
0.4762
0.5295
0.5829
0.6362
0.7667
1.0000 | | | Rainfall | ************ File Summary ******* First Date | | | _ | Periods
w/Precip | | Periods
Malfunc. | | 1 | AUG-08-199 | 6 DEC-31 | -2013 |
60 min | 28488 | 0 | 0 | | Runoff Qu ******** Initial L Total Pre Evaporati Infiltrat Surface R Final Sur Continuit ******* Flow Rout ******** Dry Weath | ********** antity Conti ******** ID Storage . cipitation . on Loss ion Loss inface Storage y Error (%) ********* ing Continui ********* er Inflow er Inflow | nuity **** **** ty **** | Volume hectare-m 0.005 3595.217 202.802 2426.025 981.441 0.011 -0.419 Volume hectare-m 0.000 981.441 | 104
42 | Depth mm 0.020 54.656 71.779 28.685 18.891 0.046 Volume ^6 ltr 0.000 14.507 | | | | Groundwat
RDII Infl | er Inflow er Inflow ow Inflow | | 981.441
0.000
0.000
0.000 | 98 | 14.507
0.000
0.000
0.000 | | | | External Outflow | 972.715 | 9727.252 | |-----------------------|---------|----------| | Internal Outflow | 9.645 | 96.450 | | Storage Losses | 0.000 | 0.000 | | Initial Stored Volume | 0.000 | 0.000 | | Final Stored Volume | 0.000 | 0.001 | | Continuity Error (%) | -0.094 | | All links are stable. Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.01 | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 15454.66 | 0.00 | 423.97 | 12215.04 | 2853.71 | 410.37 | 1.14 | 0.185 | | EXT2 | 15454.66 | 0.00 | 978.90 | 7619.12 | 6939.50 | 204.72 | 0.28 | 0.449 | | BRSWM1 | 15454.66 | 0.00 | 1059.20 | 7627.17 | 6853.37 | 723.72 | 1.00 | 0.443 | | BRSWM2 | 15454.66 | 19250.81 | 1707.07 | 8318.19 | 24837.39 | 1515.09 | 2.10 | 0.716 | | BRSWM3 | 15454.66 | 0.00 | 1176.44 | 7019.39 | 7348.56 | 1174.31 | 1.53 | 0.475 | | EXT3 | 15454.66 | 0.00 | 429.51 | 12219.06 | 2843.68 | 522.96 | 1.42 | 0.184 | | EXTW | 15454.66 | 0.00 | 225.91 | 13801.71 | 1446.36 | 266.28 | 0.88 | 0.094 | | EXN | 15454.66 | 0.00 | 829.64 | 9724.21 | 4969.94 | 1806.09 | 3.42 | 0.322 | | EXTN | 15454.66 | 0.00 | 291.86 | 13568.73 | 1625.97 | 387.31 | 1.79 | 0.105 | | EXW1 | 15454.66 | 4003.33 | 1239.31 | 9215.03 | 9082.42 | 6730.11 | 10.83 | 0.467 | | LIDPilot | 15454.66 | 0.00 | 1071.37 | 12605.69 | 1847.52 | 214.31 | 0.85 | 0.120 | | Subcatchment | LID Control | Total
Inflow
mm | Evap
Loss
mm | Infil
Loss
mm | Surface
Outflow
mm | Drain
Outflow
mm | Init.
Storage
mm | Final
Storage
mm | Pcnt.
Error | |--------------|----------------|-----------------------|--------------------|---------------------|--------------------------|------------------------|------------------------|------------------------|----------------| | LIDPilot | Bioswale | 43966.33 | 18626.92 | 25324.93 | 181.73 | 0.00 | 37.42 | 52.50 | -0.41 | | LIDPilot | VegetatedSwale | 43966.33 | 609.36 | 27476.93 | 16272.75 | | 0.00 | 0.00 | -0.89 | | Node | Type | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | Occi | of Max
urrence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------| | 2 | JUNCTION | 0.02 | 0.70 | 1.00 | 7 | 14:30 | | 1 | JUNCTION | 0.02 | 0.70 | 1.70 | 7 | 14:23 | | 5 | JUNCTION | 0.00 | 0.31 | 5.31 | 3623 | 17:00 | | 6 | JUNCTION | 0.00 | 0.39 | 3.39 | 3623 | 17:00 | | WesternOutfall | OUTFALL | 0.01 | 0.64 | 0.64 | 3653 | 22:00 | | EasternOutfall | OUTFALL | 0.00 | 0.39 | 1.39 | 3623 | 17:00 | Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow | Node | Туре | Inflow
CMS | Inflow
CMS | Occurr
days hr | | Volume
10^6 ltr | Volume
10^6 ltr | |----------------|----------|---------------|---------------|-------------------|------|--------------------|--------------------| | 2 | JUNCTION | 0.883 | 5.521 | 3653 2 | 2:00 | 266.277 | 7533.958 | | 1 | JUNCTION | 12.822 | 12.822 | 3623 1 | 7:00 | 7354.793 | 7354.793 | | 5 | JUNCTION | 3.416 | 3.416 | 3623 1 | 7:00 | 1806.085 | 1806.085 | | 6 | JUNCTION | 1.788 | 5.205 | 3623 1 | 7:00 | 387.307 | 2193.094 | | WesternOutfall | OUTFALL | 0.000 | 5.520 | 3653 2 | 2:00 | 0.000 | 7534.084 | | EasternOutfall | OUTFALL | 0.000 | 5.192 | 3623 1 | 7:00 | 0.000 | 2193.124 | Surcharging occurs when water rises above the top of the highest conduit. Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Meters Meters 2 JUNCTION 9.21 0.000 0.000 1 JUNCTION 10.40 0.000 0.000 Node Flooding Summary Flooding refers to all water that overflows a node, whether it ponds or not. | Outfall Node | Flow | Avg. | Max. | Total | |----------------|-------|-------|--------|----------| | | Freq. | Flow | Flow | Volume | | | Pcnt. | CMS | CMS | 10^6 ltr | | WesternOutfall | 27.80 | 0.049 | 5.520 | 7534.084 | | EasternOutfall | 20.36 | 0.020 | 5.192 | 2193.124 | | System | 24.08 | 0.069 | 10.512 | 9727.208 | | Link | Туре | Maximum
 Flow
CMS | 0ccu | of Max
rrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------| | Western2 | CHANNEL | 5.520 | 3653 | 22:00 | 2.81 | 0.91 | 0.92 | | Eastern1 | CHANNEL | 3.418 | 3623 | 17:00 | 7.16 | 0.06 | 0.24 | | Eastern2 | CHANNEL | 5.192 | 3623 | 17:00 | 8.04 | 0.09 | 0.30 | | Western1 | CHANNEL | 4.767 | 694 | 22:55 | 2.37 | 1.03 | 1.00 | | | | | | Hours | Hours | |----------|-----------|------------|----------|-------------|----------| | | | Hours Full | | Above Full | Capacity | | Conduit | Both Ends | Upstream | Dnstream | Normal Flow | Limited | | | | | | | | | Western1 | 8.93 | 10.30 | 9.21 | 10.43 | 10.30 | Analysis ended on: Thu Feb 19 13:40:05 2015 Total elapsed time: 00:08:06 Page 7 SWMM 5 ``` EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **************** Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date
..... JAN-01-2014 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ****** Rainfall File Summary ******* Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. AUG-08-1996 DEC-31-2013 60 min 28488 ******* Volume Depth hectare-m mm Runoff Ouantity Continuity Initial LID Storage ... 0.019 Total Precipitation ... 3595.989 Evaporation Loss ... 216.887 Infiltration Loss ... 2940.633 Surface Runoff ... 456.481 Final Surface Storage ... 0.031 Continuity Error (%) 0.019 0.080 3595.989 15454.656 216.887 932.127 12638.100 1961.841 0.131 ******* Volume Volume Flow Routing Continuity hectare-m 10^6 ltr ----- 0.000 Dry Weather Inflow 0.000 Wet Weather Inflow 456.481 4564.860 Groundwater Inflow 0.000 0.000 RDII Inflow External Inflow 448.180 0.000 0.000 4481.848 88 099 External Outflow 88.099 0.000 0.000 Internal Outflow 8.810 0.000 0.000 0.000 Storage Losses Initial Stored Volume ``` Page 1 SWMM 5 -0.111 0.000 Final Stored Volume Continuity Error (%) ******** All links are stable. Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 15454.66 | 0.00 | 423.97 | 12215.04 | 2853.71 | 410.37 | 1.14 | 0.185 | | EXT2 | 15454.66 | 0.00 | 978.90 | 7619.12 | 6939.50 | 204.72 | 0.28 | 0.449 | | BRSWM1 | 15454.66 | 0.00 | 1059.20 | 7627.17 | 6853.37 | 723.72 | 1.00 | 0.443 | | BRSWM2 | 15454.66 | 19250.81 | 1815.05 | 17223.55 | 15992.65 | 975.56 | 2.02 | 0.461 | | BRSWM3 | 15454.66 | 0.00 | 1176.44 | 7019.39 | 7348.56 | 1174.31 | 1.53 | 0.475 | | EXT3 | 15454.66 | 0.00 | 429.51 | 12219.06 | 2843.68 | 522.96 | 1.42 | 0.184 | | EXTW | 15454.66 | 0.00 | 225.91 | 13801.71 | 1446.36 | 266.28 | 0.88 | 0.094 | | EXN | 15454.66 | 0.00 | 1006.34 | 12565.80 | 1966.78 | 714.73 | 3.35 | 0.127 | | EXTN | 15454.66 | 0.00 | 291.86 | 13568.73 | 1625.97 | 387.31 | 1.79 | 0.105 | | EXW | 15454.66 | 2830.25 | 1297.57 | 13831.86 | 3249.15 | 2786.16 | 10.97 | 0.178 | | Subcatchment | LID Control | Total
Inflow
mm | Evap
Loss
mm | Infil
Loss
mm | Surface
Outflow
mm | Drain
Outflow
mm | Init.
Storage | Final
Storage
mm | Po
Er | |--------------|----------------|-----------------------|--------------------|---------------------|--------------------------|------------------------|------------------|------------------------|----------| | EXN | Bioswale | 56429.29 | 19857.31 | 36578.34 | 446.95 | 0.00 | 37.42 | 52.50 | - (| | EXN | VegetatedSwale | 56429.29 | 718.10 | 25231.23 | 30756.14 | 0.00 | 0.00 | 0.00 | - (| | EXW | Bioswale | 181894.96 | 22853.49 | 143355.88 | 17553.99 | 0.00 | 37.42 | 52.51 | -] | | EXW | VegetatedSwale | 181894.96 | 758.14 | 52437.61 | 129195.83 | 0.00 | 0.00 | 0.00 | - (| | Node | Туре | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | 0cci | of Max
urrence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------| | 2 | JUNCTION | 0.01 | 0.70 | 1.00 | 7 | 14:41 | | 1 | JUNCTION | 0.01 | 0.70 | 1.70 | 7 | 14:36 | | 5 | JUNCTION | 0.00 | 0.31 | 5.31 | 3623 | 17:00 | | 6 | JUNCTION | 0.00 | 0.39 | 3.39 | 3623 | 17:00 | | WesternOutfall | OUTFALL | 0.01 | 0.64 | 0.64 | 3653 | 22:00 | | EasternOutfall | OUTFALL | 0.00 | 0.39 | 1.39 | 3623 | 17:00 | | Node | Type | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | 0ccui | of Max
rrence
nr:min | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | |---------------------------------------|---|---|---|--|--|---|---| | 2 1 5 6 WesternOutfall EasternOutfall | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL | 0.883
12.115
3.351
1.788
0.000
0.000 | 5.521
12.115
3.351
5.137
5.520
5.132 | 3653
3623
3623
3623
3653
3653 | 22:00
17:00
17:00
17:00
22:00
17:00 | 266.277
3196.524
714.731
387.307
0.000
0.000 | 3380.094
3196.524
714.731
1101.718
3380.210
1101.617 | Surcharging occurs when water rises above the top of the highest conduit. Flooding refers to all water that overflows a node, whether it ponds or not. | Node | Hours
Flooded | Maximum
Rate
CMS | Time of Max
Occurrence
days hr:min | Total
Flood
Volume
10^6 ltr | Maximum
Ponded
Volume
1000 m3 | |------|------------------|------------------------|--|--------------------------------------|--| | 1 | 9.14 | 7.434 | 3623 17:00 | 88.099 | 0.000 | | | Flow
Freq. | Avg.
Flow | Max.
Flow | Total
Volume | |----------------------------------|----------------|----------------|----------------|----------------------| | Outfall Node | Pcnt. | CMS | CMS | 10^6 ltr | | WesternOutfall
EasternOutfall | 26.31
20.43 | 0.023
0.010 | 5.520
5.132 | 3380.210
1101.617 | | System | 23.37 | 0.033 | 10.452 | 4481.828 | | Link | Туре | Maximum
 Flow
CMS | 0ccu | of Max
rrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |-------------------------------------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------| | Western2 Eastern1 Eastern2 Western1 | CHANNEL | 5.520 | 3653 | 22:00 | 2.81 | 0.91 | 0.92 | | | CHANNEL | 3.349 | 3623 | 17:00 | 7.10 | 0.06 | 0.24 | | | CHANNEL | 5.132 | 3623 | 17:00 | 8.00 | 0.09 | 0.30 | | | CHANNEL | 4.765 | 6216 | 00:02 | 2.29 | 1.03 | 1.00 | Conduit Surcharge Summary | | | | | Hours | Hours | |----------|-----------|------------|----------|-------------|----------| | | | Hours Full | | Above Full | Capacity | | Conduit | Both Ends | Upstream | Dnstream | Normal Flow | Limited | | | | | | | | | Western1 | 8.05 | 9.05 | 8.25 | 9.27 | 9.05 | Analysis begun on: Wed Feb 18 17:47:32 2015 Analysis ended on: Wed Feb 18 17:55:47 2015 Total elapsed time: 00:08:15 Page 4 SWMM 5 ``` EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) ************** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Starting Date AUG-01-1996 00:00:00 Ending Date SEP-01-1996 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec ``` WARNING 01: wet weather time step reduced to recording interval for Rain Gage 1 ********** Element Count ********* | Name | Data Source | | Recording
Interval | |------|-------------|-----------|-----------------------| | 1 | 100year | INTENSITY | 10 min. | | Name | Area | Width | %Imperv | %Slope | Rain Gage | Outlet | |----------|-------|---------|---------|--------|-----------|--------| | EXT1 | 14.38 | 2000.00 | 20.00 | 2.0000 |
1 | 1 | | EXT2 | 2.95 | 2000.00 | 50.00 | 2.0000 | 1 | EXW1 | | BRSWM1 | 10.56 | 2000.00 | 50.00 | 2.0000 | 1 | EXW1 | | BRSWM2 | 6.10 | 2000.00 | 74.00 | 2.0000 | 1 | EXW1 | | BRSWM3 | 15.98 | 2000.00 | 54.00 | 2.0000 | 1 | BRSWM2 | | EXT3 | 18.39 | 2043.00 | 20.00 | 2.0000 | 1 | EXW1 | | EXTW | 18.41 | 1473.00 | 10.00 | 2.0000 | 1 | 2 | | EXN | 36.34 | 3028.00 | 35.40 | 2.0000 | 1 | 5 | | EXTN | 23.82 | 2382.00 | 10.00 | 2.0000 | 1 | 6 | | EXW1 | 74.10 | 3920.00 | 51.50 | 2.0000 | 1 | 1 | | LIDPilot | 11.60 | 500.00 | 39.00 | 2.0000 | 1 | 1 | | Subcatchment | LID Control | No. of
Units | Unit
Area | Unit
Width | % Area
Covered | % Imperv
Treated | |--------------|----------------|-----------------|--------------|---------------|-------------------|---------------------| | LIDPilot | Bioswale | 5 | 250.00 | 6.00 | 1.08 | 15.00 | | LIDPilot | VegetatedSwale | 5 | 250.00 | 6.00 | 1.08 | 15.00 | | Name | Type | Invert
Elev. | Max.
Depth | Ponded
Area | External
Inflow | |----------------|----------|-----------------|---------------|----------------|--------------------| | 2 | JUNCTION | 0.30 | 0.70 | 0.0 | | | 1 | JUNCTION | 1.00 | 0.70 | 0.0 | | | 5 | JUNCTION | 5.00 | 1.30 | 0.0 | | | 6 | JUNCTION | 3.00 | 1.30 | 0.0 | | | WesternOutfall | OUTFALL | 0.00 | 0.70 | 0.0 | | | EasternOutfall | OUTFALL | 1.00 | 1.30 | 0.0 | | | Name | From Node | To Node | Type | Length | %Slope R | oughness | |----------|-----------|----------------|---------|--------|----------|----------| | Western2 | 2 | WesternOutfall | CONDUIT | 100.0 | 0.3000 | 0.0100 | | Eastern1 | 5 | 6 | CONDUIT | 50.0 | 4.0032 | 0.0100 | | Eastern2 | 6 | EasternOutfall | CONDUIT | 50.0 | 4.0032 | 0.0100 | |
Western1 | 1 | 2 | CONDUIT | 400.0 | 0.1750 | 0.0100 | | Conduit | Shape | Full
Depth | Full
Area | Hyd.
Rad. | Max.
Width | No. of
Barrels | Full
Flow | |----------|----------|---------------|--------------|--------------|---------------|-------------------|--------------| | Western2 | Western2 | 0.70 | 2.35 | 0.32 | 7.00 | 1 | 6.07 | | Eastern1 | Eastern1 | 1.30 | 4.00 | 0.59 | 6.00 | 1 | 56.19 | | Eastern2 | Eastern2 | 1.30 | 4.00 | 0.59 | 6.00 | 1 | 56.19 | | Western1 | Western1 | 0.70 | 2.35 | 0.32 | 7.00 | 1 | 4.64 | 0.2862 0.4400 Transect Western1 Area: 0.0209 0.0008 0.0033 0.0075 0.0133 0.0300 0.0409 0.0529 0.0654 0.0784 0.0918 0.1057 0.1200 0.1347 0.1499 0.1655 0.1816 0.1981 0.2151 0.2325 0.2504 0.2687 0.2874 0.3066 0.3262 0.3878 0.3463 0.3668 0.4092 0.4311 0.5471 0.4534 0.4761 0.4993 0.5230 0.5716 0.5966 0.6220 0.6478 0.6742 0.7009 0.7281 0.7558 0.7848 0.8158 0.8488 0.8837 0.9205 0.9593 1.0000 Hrad: 0.0214 0.0428 0.0643 0.0857 0.1071 0.1285 0.1499 0.1840 0.2531 0.2191 0.3183 0.4689 0.3497 0.4973 SWMM 5 Page 2 0.3804 0.5253 0.4105 0.5529 | Width: | 0.5801 | 0.6069 | 0.6334 | 0.6596 | 0.6855 | |-------------|--|--|--|--|--| | | 0.7111 | 0.7365 | 0.7617 | 0.7867 | 0.8114 | | | 0.8360 | 0.8603 | 0.8845 | 0.9086 | 0.9325 | | | 0.9563 | 0.9799 | 1.0034 | 1.0268 | 1.0500 | | | 1.0732 | 1.0962 | 1.1156 | 1.1135 | 1.1117 | | | 1.1103 | 1.1093 | 1.1090 | 1.1093 | 1.0000 | | "I'dell' | 0.0400 | 0.0800 | 0.1200 | 0.1600 | 0.2000 | | | 0.2400 | 0.2800 | 0.2949 | 0.3055 | 0.3162 | | | 0.3269 | 0.3375 | 0.3482 | 0.3589 | 0.3695 | | | 0.3802 | 0.3909 | 0.4015 | 0.4122 | 0.4229 | | | 0.4335 | 0.4442 | 0.4549 | 0.4655 | 0.4762 | | | 0.4869 | 0.4975 | 0.5082 | 0.5189 | 0.5295 | | | 0.5402 | 0.5509 | 0.5615 | 0.5722 | 0.5829 | | | 0.5935 | 0.6042 | 0.6149 | 0.6255 | 0.6362 | | | 0.6469 | 0.6575 | 0.6733 | 0.7200 | 0.7667 | | | 0.8133 | 0.8600 | 0.9067 | 0.9533 | 1.0000 | | Transect W | estern2 | | | | | | Area: | 0.0008 | 0.0033 | 0.0075 | 0.0133 | 0.0209 | | | 0.0300 | 0.0409 | 0.0529 | 0.0654 | 0.0784 | | | 0.0918 | 0.1057 | 0.1200 | 0.1347 | 0.1499 | | | 0.1655 | 0.1816 | 0.1981 | 0.2151 | 0.2325 | | | 0.2504 | 0.2687 | 0.2874 | 0.3066 | 0.3262 | | | 0.3463 | 0.3668 | 0.3878 | 0.4092 | 0.4311 | | | 0.4534 | 0.4761 | 0.4993 | 0.5230 | 0.5471 | | | 0.5716 | 0.5966 | 0.6220 | 0.6478 | 0.6742 | | | 0.7009 | 0.7281 | 0.7558 | 0.7848 | 0.8158 | | Hrad: | 0.8488 | 0.8837 | 0.9205 | 0.9593 | 1.0000 | | widele. | 0.0214 | 0.0428 | 0.0643 | 0.0857 | 0.1071 | | | 0.1285 | 0.1499 | 0.1840 | 0.2191 | 0.2531 | | | 0.2862 | 0.3183 | 0.3497 | 0.3804 | 0.4105 | | | 0.4400 | 0.4689 | 0.4973 | 0.5253 | 0.5529 | | | 0.5801 | 0.6069 | 0.6334 | 0.6596 | 0.6855 | | | 0.7111 | 0.7365 | 0.7617 | 0.7867 | 0.8114 | | | 0.8360 | 0.8603 | 0.8845 | 0.9086 | 0.9325 | | | 0.9563 | 0.9799 | 1.0034 | 1.0268 | 1.0500 | | | 1.0732 | 1.0962 | 1.1156 | 1.1135 | 1.1117 | | | 1.1103 | 1.1093 | 1.1090 | 1.1093 | 1.0000 | | Width: | 0.0400
0.2400
0.3269
0.3802
0.4335
0.4869
0.5402
0.5935
0.6469
0.8133 | 0.0800
0.2800
0.3375
0.3909
0.4442
0.4975
0.5509
0.6042
0.6575
0.8600 | 0.1200
0.2949
0.3482
0.4015
0.4549
0.5082
0.5615
0.6149
0.6733
0.9067 | 0.1600
0.3055
0.3589
0.4122
0.4655
0.5189
0.5722
0.6255
0.7200
0.9533 | 0.2000
0.3162
0.3695
0.4229
0.4762
0.5295
0.5829
0.6362
0.7667 | | Transect Ea | astern1 | | | | | | | 0.0068
0.0491
0.1056
0.1761
0.2607
0.3591
0.4697
0.5923
0.7271
0.8739 | 0.0141
0.0593
0.1186
0.1919
0.2793
0.3802
0.4932
0.6183
0.7555
0.9047 | 0.0220
0.0700
0.1321
0.2083
0.2985
0.4019
0.5173
0.6448
0.7843 | 0.0305
0.0813
0.1462
0.2252
0.3182
0.4240
0.5418
0.6717
0.8137
0.9677 | 0.0395
0.0932
0.1609
0.2427
0.3384
0.4466
0.5668
0.6991
0.8435
1.0000 | | Hrad: | 0.0417 | 0.0796 | 0.1145 | 0.1472 | 0.1779 | | | 0.2072 | 0.2353 | 0.2623 | 0.2884 | 0.3139 | | | 0.3387 | 0.3629 | 0.3867 | 0.4101 | 0.4331 | | | 0.4558 | 0.4782 | 0.5004 | 0.5223 | 0.5440 | | | 0.5656 | 0.5870 | 0.6082 | 0.6310 | 0.6536 | | Width: | 0.6761
0.7853
0.8908
0.9934
1.0939 | 0.6983
0.8067
0.9115
1.0137
1.1138 | 0.7203
0.8279
0.9321
1.0338
1.1337 | 0.7422
0.8490
0.9526
1.0539
1.1535 | 0.7638
0.8699
0.9731
1.0740
1.0000 | |---------------------|--|--|--|--|--| | width. | 0.1811
0.2533
0.3256
0.3978
0.4700
0.5362
0.5981
0.6600
0.7219
0.7838 | 0.1956
0.2678
0.3400
0.4122
0.4844
0.5486
0.6105
0.6724
0.7343
0.7962 | 0.2100
0.2822
0.3544
0.4267
0.4989
0.5610
0.6229
0.6848
0.7467
0.8086 | 0.2244
0.2967
0.3689
0.4411
0.5114
0.5733
0.6352
0.6971
0.7590
0.8210 | 0.2389
0.3111
0.3833
0.4556
0.5238
0.5857
0.6476
0.7095
0.7714 | | Transect E
Area: | Eastern2 | | | | | | Hrad: | 0.0068
0.0491
0.1056
0.1761
0.2607
0.3591
0.4697
0.5923
0.7271
0.8739 | 0.0141
0.0593
0.1186
0.1919
0.2793
0.3802
0.4932
0.6183
0.7555
0.9047 | 0.0220
0.0700
0.1321
0.2083
0.2985
0.4019
0.5173
0.6448
0.7843
0.9360 | 0.0305
0.0813
0.1462
0.2252
0.3182
0.4240
0.5418
0.6717
0.8137
0.9677 | 0.0395
0.0932
0.1609
0.2427
0.3384
0.4466
0.5668
0.6991
0.8435
1.0000 | | niau. | 0.0417
0.2072
0.3387
0.4558
0.5656
0.6761
0.7853
0.8908
0.9934
1.0939 | 0.0796
0.2353
0.3629
0.4782
0.5870
0.6983
0.8067
0.9115
1.0137
1.1138 | 0.1145
0.2623
0.3867
0.5004
0.6082
0.7203
0.8279
0.9321
1.0338
1.1337 | 0.1472
0.2884
0.4101
0.5223
0.6310
0.7422
0.8490
0.9526
1.0539
1.1535 | 0.1779
0.3139
0.4331
0.5440
0.6536
0.7638
0.8699
0.9731
1.0740 | | Width: | 0.1811
0.2533
0.3256
0.3978
0.4700
0.5362
0.5981
0.6600
0.7219
0.7838 | 0.1956
0.2678
0.3400
0.4122
0.4844
0.5486
0.6105
0.6724
0.7343
0.7962 | 0.2100
0.2822
0.3544
0.4267
0.4989
0.5610
0.6229
0.6848
0.7467
0.8086 | 0.2244
0.2967
0.3689
0.4411
0.5114
0.5733
0.6352
0.6971
0.7590
0.8210 | 0.2389
0.3111
0.3833
0.4556
0.5238
0.5857
0.6476
0.7095
0.7714
1.0000 | | Transect W | Western | | | | | | Area: | 0.0008
0.0300
0.0918
0.1655
0.2504
0.3463
0.4534
0.5716
0.7009
0.8488 | 0.0033
0.0409
0.1057
0.1816
0.2687
0.3668
0.4761
0.5966
0.7281 | 0.0075
0.0529
0.1200
0.1981
0.2874
0.3878
0.4993
0.6220
0.7558
0.9205 | 0.0133
0.0654
0.1347
0.2151
0.3066
0.4092
0.5230
0.6478
0.7848
0.9593 | 0.0209
0.0784
0.1499
0.2325
0.3262
0.4311
0.5471
0.6742
0.8158 | | Hrad: | 0.0214
0.1285
0.2862
0.4400
0.5801
0.7111 | 0.0428
0.1499
0.3183
0.4689
0.6069
0.7365 | 0.0643
0.1840
0.3497
0.4973
0.6334
0.7617 | 0.0857
0.2191
0.3804
0.5253
0.6596
0.7867 | 0.1071
0.2531
0.4105
0.5529
0.6855
0.8114 | | | 0.8360 | 0.8603 | 0.8845 | 0.9086 | 0.9325 | |--------------------------|------------------------|---------|------------------|-------------------|------------------| | | 0.9563 | 0.9799 | 1.0034 | 1.0268 | 1.0500 | | | 1.0732 | 1.0962 | 1.1156 | 1.1135 | 1.1117 | | **** 1.1 . | 1.1103 | 1.1093 | 1.1090 | 1.1093 | 1.0000 | | Width: | 0 0400 | 0 0000 | 0 1000 | 0 1600 | 0 2000 | | | 0.0400
0.2400 | 0.0800 | 0.1200
0.2949 | 0.1600
0.3055 | 0.2000
0.3162 | | | 0.3269 | 0.2300 | 0.3482 | 0.3589 | 0.3102 | | | 0.3802 | 0.3373 | 0.4015 | 0.4122 | 0.4229 | | | 0.4335 | 0.4442 | 0.4549 | 0.4655 | 0.4762 | | | 0.4869 | 0.4975 | 0.5082 | 0.5189 | 0.5295 | | | 0.5402 | 0.5509 | 0.5615 | 0.5722 | 0.5829 | | | 0.5935 | 0.6042 | 0.6149 | 0.6255 | 0.6362 | | | 0.6469 | 0.6575 | 0.6733 | 0.7200 | 0.7667 | | | 0.8133 | 0.8600 | 0.9067 | 0.9533 | 1.0000 | | | | | | | | | | | | _ | | | | | ****** | | Volume | Depth | | | Runoff Quan | tity Contin | uity | hectare-m | mm | | | | Storage | | 0.005 | 0.020 | | | | pitation | | 16.681 | 71.708 | | | | Loss | | 0.230 | 0.987 | | | | n Loss | | 6.886 | 29.601 | | | Surface Run | off | | 9.873 | 42.442 | | | Final Surfa | ce Storage | | 0.000 | 0.000 | | | Continuity | Error (%) . | | -1.815 | | | | | | | | | | | | | | _ | _ | | | | ****** | | Volume | Volume | | | | g Continuit
****** | | hectare-m | 10 ^ 6 ltr | | | | Inflow | | 0.000 | 0.000 | | | - | Inflow | | 9.873 | 98.734 | | | | Inflow | | 0.000 | 0.000 | | | | | | 0.000 | 0.000 | | | | flow | | 0.000 | 0.000 | | | External Ou | tflow | | 5.682 | 56.826 | | | Internal Ou | tflow | | 4.200 | 41.996 | | | | ses | | 0.000 |
0.000 | | | | red Volume | | 0.000 | 0.000 | | | | d Volume | | 0.000 | 0.000 | | | Continuity | Error (%) . | • • • • | -0.088 | | | | | | | | | | | ****** | ***** | ***** | ** | | | | | w Instabili | | | | | | ***** | ***** | ***** | ** | | | | All links a | re stable. | ****** | | | | | | Routing Tim | ne Step Summ
****** | ary | | | | | ************ Minimum Tim | | *** | 30.00 sec | | | | Average Tim | | : | | | | | Maximum Tim | | : | 30.00 sec | | | | | Steady Stat | | 0.00 | | | | | rations per | | | | | | | 1 1.01 | E | | | | | | | | | | | | | ****** | | | | | | | t Runoff Su | | | | | | ****** | ***** | **** | | | | | | | | | | | | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 71.71 | 0.00 | 0.69 | 35.76 | 37.21 | 5.35 | 4.21 | 0.519 | | EXT2 | 71.71 | 0.00 | 0.78 | 20.77 | 51.42 | 1.52 | 1.35 | 0.717 | |----------|-------|--------|------|-------|--------|-------|-------|-------| | BRSWM1 | 71.71 | 0.00 | 0.84 | 21.46 | 51.16 | 5.40 | 4.43 | 0.713 | | BRSWM2 | 71.71 | 136.98 | 1.16 | 14.51 | 193.77 | 11.82 | 7.27 | 0.929 | | BRSWM3 | 71.71 | 0.00 | 0.90 | 20.03 | 52.29 | 8.36 | 6.50 | 0.729 | | EXT3 | 71.71 | 0.00 | 0.69 | 36.38 | 36.36 | 6.69 | 4.93 | 0.507 | | EXTW | 71.71 | 0.00 | 0.89 | 49.47 | 21.93 | 4.04 | 1.79 | 0.306 | | EXN | 71.71 | 0.00 | 0.99 | 25.94 | 46.23 | 16.80 | 11.36 | 0.645 | | EXTN | 71.71 | 0.00 | 0.94 | 37.90 | 34.12 | 8.13 | 4.18 | 0.476 | | EXW1 | 71.71 | 34.31 | 1.08 | 25.03 | 81.06 | 60.07 | 27.51 | 0.765 | | LIDPilot | 71.71 | 0.00 | 1.70 | 34.11 | 37.48 | 4.35 | 1.88 | 0.523 | | Total | Evap | Infil | Surface | Drain | Init. | Final | Potential Potenti Node Depth Summary | Node | Туре | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | Occi | of Max
irrence
hr:min | |----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------| | 2 | JUNCTION | 0.00 | 0.70 | 1.00 | 0 | 01:00 | | 1 | JUNCTION | 0.00 | 0.70 | 1.70 | 0 | 00:57 | | 5 | JUNCTION | 0.00 | 0.58 | 5.58 | 0 | 01:10 | | 6 | JUNCTION | 0.00 | 0.67 | 3.67 | 0 | 01:10 | | WesternOutfall | OUTFALL | 0.00 | 0.70 | 0.70 | 0 | 01:10 | | EasternOutfall | OUTFALL | 0.00 | 0.67 | 1.67 | 0 | 01:10 | | Node | Type | Maximum
Lateral
Inflow
CMS | Maximum
Total
Inflow
CMS | Time of Max
Occurrence
days hr:min | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | |----------------|-------------------------------------|-------------------------------------|-----------------------------------|--|---|---------------------------------------| | 2 | JUNCTION JUNCTION JUNCTION JUNCTION | 1.788 | 6.425 | 0 01:10 | 4.038 | 31.969 | | 1 | | 33.506 | 33.506 | 0 01:10 | 69.766 | 69.766 | | 5 | | 11.355 | 11.355 | 0 01:10 | 16.802 | 16.802 | | 6 | | 4.175 | 15.470 | 0 01:10 | 8.128 | 24.929 | | WesternOutfall | OUTFALL | 0.000 | 6.220 | 0 01:17 | 0.000 | 31.896 | | EasternOutfall | OUTFALL | | 15.395 | 0 01:10 | 0.000 | 24.930 | Surcharging occurs when water rises above the top of the highest conduit. | Node | Туре | | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |------|----------|------|--------------------------------------|-----------------------------------| | 2 | JUNCTION | 0.95 | 0.000 | 0.000 | | 1 | JUNCTION | 0.98 | 0.000 | 0.000 | Flooding refers to all water that overflows a node, whether it ponds or not. | | | | | Total | Maximum | |------|---------|---------|-------------|-------------------|---------| | | | Maximum | Time of Max | Flood | Ponded | | | Hours | Rate | Occurrence | Volume | Volume | | Node | Flooded | CMS | days hr:min | 10 ^ 6 ltr | 1000 m3 | | | | | | | | | 2 | 0.15 | 0.339 | 0 01:10 | 0.090 | 0.000 | | 1 | 0.98 | 28.675 | 0 01:10 | 41.905 | 0.000 | Maximum Time of Max Occurrence (Ploc) Maximum Max/ Full Max/ Full Maximum Occurrence (Ploc) Max/ Full | Hours | Hours | Hours | Capacity | Conduit | Both Ends | Upstream | Dnstream | Dnstream | Normal Flow | Limited | Limited | Western2 | 0.10 | 0.14 | 0.11 | 0.16 | 0.14 | Western1 | 0.93 | 0.97 | 0.95 | 0.99 | 0.97 | Analysis begun on: Thu Feb 19 13:46:10 2015 Analysis ended on: Thu Feb 19 13:46:10 2015 Total elapsed time: < 1 sec not just on results from each reporting time step. Flow Units CMS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE Antecedent Dry Days 0.0 Report Time Step 00:15:00 Wet Time Step 00:15:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec WARNING 01: wet weather time step reduced to recording interval for Rain Gage 1 | ******* | Volume | Depth | |----------------------------|-----------|--------| | Runoff Quantity Continuity | hectare-m | mm | | ******* | | | | Initial LID Storage | 0.019 | 0.080 | | Total Precipitation | 16.685 | 71.708 | | Evaporation Loss | 0.265 | 1.137 | | Infiltration Loss | 7.330 | 31.503 | | Surface Runoff | 9.430 | 40.529 | | Final Surface Storage | 0.000 | 0.000 | | Continuity Error (%) | -1.925 | | | | | | | ************************************** | Volume
hectare-m | Volume
10^6 ltr | |--|--------------------------|---------------------------| | Dry Weather Inflow Wet Weather Inflow | 0.000 | 0.000
94.305 | | Groundwater Inflow RDII Inflow External Inflow | 0.000
0.000
0.000 | 0.000
0.000
0.000 | | External Outflow | 5.432
4.019
0.000 | 54.316
40.188
0.000 | | Initial Stored Volume Final Stored Volume Continuity Error (%) | 0.000
0.000
-0.212 | 0.000 | Minimum Time Step : 30.00 sec Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 | Subcatchment | Total
Precip
mm | Total
Runon
mm | Total
Evap
mm | Total
Infil
mm | Total
Runoff
mm | Total
Runoff
10^6 ltr | Peak
Runoff
CMS | Runoff
Coeff | |--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------| | EXT1 | 71.71 | 0.00 | 0.69 | 35.76 | 37.21 | 5.35 | 4.21 | 0.519 | | EXT2 | 71.71 | 0.00 | 0.78 | 20.77 | 51.42 | 1.52 | 1.35 | 0.717 | | BRSWM1 | 71.71 | 0.00 | 0.84 | 21.46 | 51.16 | 5.40 | 4.43 | 0.713 | | BRSWM2 | 71.71 | 136.98 | 1.22 | 16.50 | 191.37 | 11.67 | 5.82 | 0.917 | | BRSWM3 | 71.71 | 0.00 | 0.90 | 20.03 | 52.29 | 8.36 | 6.50 | 0.729 | | EXT3 | 71.71 | 0.00 | 0.69 | 36.38 | 36.36 | 6.69 | 4.93 | 0.507 | | EXTW | 71.71 | 0.00 | 0.89 | 49.47 | 21.93 | 4.04 | 1.79 | 0.306 | | EXN | 71.71 | 0.00 | 1.48 | 28.94 | 43.12 | 15.67 | 7.89 | 0.601 | | EXTN | 71.71 | 0.00 | 0.94 | 37.90 | 34.12 | 8.13 | 4.18 | 0.476 | | EXW | 71.71 | 29.48 | 1.36 | 30.01 | 71.27 | 61.12 | 24.22 | 0.704 | LID Performance Summary | Total | Evap | Infil | Surface | Drain | Init. | Final | Potential Potenti | Node | Туре | Average
Depth
Meters | Maximum
Depth
Meters | Maximum
HGL
Meters | 0cci | of Max
urrence
hr:min | |---------------------------------------|--------------------------------|----------------------------|----------------------------|--------------------------|-------------|-----------------------------| | 2
1
5 | JUNCTION JUNCTION JUNCTION | 0.00
0.00
0.00 | 0.70
0.70
0.48 | 1.00
1.70
5.48 | 0
0
0 | 01:03
01:01
01:10 | | 6
WesternOutfall
EasternOutfall | JUNCTION
OUTFALL
OUTFALL | 0.00
0.00
0.00 | 0.60
0.70
0.60 | 3.60
0.70
1.60 | 0
0
0 | 01:10
01:10
01:10 | | | | | | | | | Node Inflow Summary | | | Maximum | Maximum | | Lateral | Total | |------|----------|---------|---------|-------------|-------------------|-------------------| | | | Lateral | Total | Time of Max | Inflow | Inflow | | | | Inflow | Inflow | Occurrence | Volume | Volume | | Node | Type | CMS | CMS | days hr:min | 10 ^ 6 ltr | 10 ^ 6 ltr | | 2 | JUNCTION | 1.788 | 6.425 | 0 01:10 | 4.038 | 30.590 | | 1 | JUNCTION | 26.108 | 26.108 | 0 | 01:20 | 66.468 | 66.468 | |----------------|----------|--------|--------|---|-------|--------|--------| | 5 | JUNCTION | 7.885 | 7.885 | 0 | 01:10 | 15.671 | 15.671 | | 6 | JUNCTION | 4.175 | 12.010 | 0 | 01:10 | 8.128 | 23.799 | | WesternOutfall | OUTFALL | 0.000 | 6.220 | 0 | 01:17 | 0.000 | 30.517 | | EasternOutfall | OUTFALL | 0.000 | 12.026 | 0 | 01:10 | 0.000 | 23.799 | Surcharging occurs when water rises above the top of the highest conduit. | Node | Type | Hours
Surcharged | Max. Height
Above Crown
Meters | Min. Depth
Below Rim
Meters | |------|----------|---------------------|--------------------------------------|-----------------------------------| | 2 | JUNCTION | 1.03 | 0.000 | 0.000 | | 1 | JUNCTION | 1.05 | 0.000 | 0.000 | Flooding refers to all water that overflows a node, whether it ponds or not. | Node | Hours
Flooded | Maximum
Rate
CMS | Time of Max
Occurrence
days hr:min | Total
Flood
Volume
10^6 ltr | Maximum
Ponded
Volume
1000 m3 | |------|------------------|------------------------|--|--------------------------------------|--| | 2 | 0.15
1.05 | 0.339
21.401 | 0 01:10
0 01:20 |
0.090
40.098 | 0.000 | | | Flow
Freq. | Avg.
Flow | Max.
Flow | Total
Volume | |----------------------------------|---------------|----------------|-----------------|-------------------| | Outfall Node | Pcnt. | CMS | CMS | 10 ^ 6 ltr | | WesternOutfall
EasternOutfall | 1.12
0.96 | 1.010
0.921 | 6.220
12.026 | 30.517
23.799 | | System | 1.04 | 1.932 | 18.128 | 54.316 | | Link | Type | Maximum
 Flow
CMS | Time of Max
Occurrence
days hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |----------------------------------|-------------------------------|--------------------------|--|-----------------------------|----------------------|-----------------------| | Western2
Eastern1
Eastern2 | CHANNEL
CHANNEL
CHANNEL | 6.220
7.878
12.026 | 0 01:17
0 01:10
0 01:10 | 2.82
9.02
10.08 | 1.02
0.14
0.21 | 1.00
0.37
0.46 | | Western1 | CHANNEL | 4.751 | 0 02:07 | 2.29 | 1.02 | 1.00 | ______ | | | Hours Full | | Hours
Above Full | Hours
Capacity | |----------------------|-----------|--------------|--------------|---------------------|-------------------| | Conduit | Both Ends | Upstream | Dnstream | Normal Flow | Limited | | Western2
Western1 | 0.10 | 0.14
1.04 | 0.11
1.03 | 0.16
1.08 | 0.14 | Analysis begun on: Thu Feb 19 13:45:02 2015 Analysis ended on: Thu Feb 19 13:45:02 2015 Total elapsed time: < 1 sec Page 4 SWMM 5