

Attachment A - Scope of Work

## Scope of Work

The following section outlines the scope of work completed in regards to the LID Demonstration Projects in accordance with the Work Plan as established in consultation with the City of Ottawa. The established Work Plan has been organized into three (3) distinct phases that are detailed below. It is acknowledged that the work plan will be subject to refinement as part of the review and consultation process with the City and the SWM Working Group.

Phase 1 – Development of Existing Conditions Report and LID Demonstration Project Scoping Document.

Phase 2 - Modelling and Interim Review of Draft Preliminary Design "Demonstration Plan" and includes the following sub-tasks:

- LID Demonstration Plan targets and criteria (water quality, erosion, flood control and infiltration)
  - § Targets for LID Demonstration Plan lot-level controls in regards to the ultimate land-

- uses (i.e. residential vs. employment uses)
- § Targets LID Demonstration Plan for conveyance controls
- § Targets for LID Demonstration Plan end-of-pipe controls to be potentially implemented in future phases based on monitoring results.
- Model selection and agreement on model parameters/inputs for the LID Demonstration Project in consultation with the SWM Working Group
- Modelling, results, analysis and reporting
- Operations & Maintenance and Assumption Protocols
  - § Potential LID operations and maintenance considerations, typical requirements and expected costs.
  - § Recommended LID assumption protocols

- Strategies for subsequent phases and demonstration plans
- Implications for CDP

Phase 3 - Preliminary Design for LID Demonstration Project Phase 1 and includes the following sub-tasks:

- o Final Review of Preliminary Design
- CDP Recommendations
- Implementation recommendations including but not limited to:
  - Monitoring program recommendations based on project objectives and targets developed from Stage 1
  - LID Demonstration Project reporting requirements
  - Process (feedback process) whereby monitoring results are used to inform/refine future LID phases and used to refine modelling assumptions and SWM credits.

## Phase 2 – Specifics

The following section provides greater detail in regards to the specific activities completed in the satisfaction of Phase 2 of the Work Plan.

## 1. Infiltration Testing

Infiltration testing of surficial soils will be completed to carry out the LID feasibility analysis and future design. The proposed Work Plan is based on borehole and test pit logs completed by DST. The in-situ infiltration testing is required for all infiltration-based LID designs and must be used to confirm and to refine the coarse estimates performed as part of the geotechnical assessment. The testing is required to determine the infiltration capacity of site specific soils, to design appropriate sizes of each facility, to determine if underdrains are required and to locate any drains within the facility crosssection. These data will allow an accurate forecast of post-development performance.

In-situ soil testing will be a combination of:

 Guelph Permeameter Testing apparatus and protocols to determine the in-situ saturated hydraulic conductivity and the design infiltration rate as per the LID Stormwater Planning and Design Guide Version 1.0 (TRCA/CVC 2010). Testing locations will be targeted to the proposed footprint of the infiltration facilities as required. Approximately 22 locations are proposed for sampling.

 Double Ring Infiltrometer to provide an infiltration rate of shallow soils at the existing land surface, at the likely interface of the proposed grade raise, to account for the effects of micro-tubules, rootlets and other macropores. A total of 6 tests are anticipated.

#### 2. Water Balance Model

The development of a water balance model for the Former CFB Rockcliffe CDP site will be completed using EPA-SWMM software, and will be based on the completed geotechnical and hydrogeological reports.

The model will be developed such that future (Stage 2 and beyond) LID options can be assessed in terms of flow reductions (water quantity and erosion), water quality, and infiltration. The model results will be utilized to develop LID SWM targets. It is

assumed that the model would include Phases 1-3 of the Rockcliffe Development.

The water balance assessment of the study area will analyze pre- and post-development hydrology and carry out an impact assessment using the following two methods:

- Assessment of the hydrologic regime: long term hydrologic modeling to assess the overall hydrology of the study area,
- Assessment of Infiltration Deficit: specific assessment for estimating the difference between water infiltrated into the ground under pre- and postdevelopment conditions.
- 2.1 Assessment of the Hydrologic Regime
  Long term hydrologic modeling for pre- and
  post-development conditions will be carried
  out to define general hydrologic processes,
  specifically surface runoff hydrology (flow
  rate and runoff volume) and infiltration and
  evaporation volumes. Since observed
  streamflow data are not available to
  calibrate and validate the hydrologic model,
  the model will not be calibrated. However,
  available background information from the

study area, in addition to previous modeling experience under similar conditions, will be used to refine the results as appropriate.

To develop the long term hydrologic model, a continuous precipitation and air temperature record has been gathered and will be applied.

The EPA SWMM model was used as a modeling platform. Developed by the U.S. Environmental Protection Agency (EPA); the EPA SWMM model and its variants (XPSWMM, PCSWMM, InfoSWMM) is a widely used model that is well suited for urban and rural areas, as it performs water quality, quantity and water balance assessments suitable for LID simulations. The model was successfully applied by Aquafor as part of subwatershed studies, stormwater management master plans, and site-based LID modeling and analysis.

#### 2.2 Assessment of Infiltration Deficit

The assessment of the impact of development on infiltration to the ground will be done in accordance with Hydrogeological Assessment Submissions-Conservation Authority Guidelines (June,

2013). Accordingly, the following activities will be undertaken:

- a) Collect climate data (air temperature), soils data (soil types and hydraulic conductivity), and land use data (imperviousness and land cover) for the study area;
- Estimate the evapotranspiration component of the hydrologic regime for the Study Area using Thornthwaite (1948) and available climate data, and calculate total water surplus;
- Define catchment area/Management Unit area, including imperviousness, land cover, and runoff coefficient under pre- and post-development conditions;
- d) Pre-development assessment: Estimate inputs (including precipitation, run-on and other inputs) and outputs (including evapotranspiration, infiltration, and surface runoff).
- e) Post-development assessment: Estimate inputs and outputs.
- f) Estimate the output volume deficit between pre- and post-development (i.e. changes in hydrologic output volumes between pre- and postdevelopment scenarios).

For the assessment of infiltration deficit, water balance spreadsheets (Microsoft Excel) will be used, and output volumes will be estimated using imperviousness values and other physical parameters deemed to change under post-development conditions for different land uses and catchment areas.

- 3. Stream Erosion Assessment
  The erosion assessment scenarios would include the following:
- a) Pre-development conditions scenario
- b) Post-development conditions scenario (including all proposed development) without SWM control
- c) Post-development conditions scenario (including all proposed development)
   with SWM control

In order to run these scenarios, a long term hydrologic model will be carried out and statistical analyses will be done to estimate the change in time of exceedance (flow duration analysis) for storm events with different frequencies under pre- and post-development conditions. The flow regimes (magnitudes and frequencies) will be analyzed under pre- and post-development conditions, and comparative results will be

presented in figures and tables for the two flow regimes.

Moreover, the 2-year storm event, which is generally linked to bankfull flows responsible for sediment removal and channel maintenance, will be analyzed under pre- and post-development conditions (in addition to post-development with SWM control conditions). All relevant pond design information (including size, surface area, and control structures) will be included in the model.

It should be noted that the hydraulic assessment of stream erosion under preand post-development conditions will not be included at this stage. More specifically, developing a hydraulic model (HEC-RAS) for the two streams should be a subsequent step (see Step 5) that would use the hydrologic model input to investigate hydraulic variables including shear stress, velocity, and water depth along the two streams. Accordingly, key locations such as downstream of culverts and the potential impact of increasing flows on channel stability would be further investigated and analyzed.

- 4. Hydraulic Model Development
  A detailed hydraulic modelling of the Eastern
  and Western tributaries will be developed to
  facilitate stream rehabilitation assessments
  and designs using the HEC-RAS modelling
  software.
- Operations & Maintenance and Assumption Protocols
   The completed tasks will be completed in parallel to the MSS including but not limited to:
  - a) Potential LID operations and maintenance considerations, typical requirements and expected costs.
  - b) Recommended LID assumption protocols
- 6. Strategies for Subsequent Phases and Demonstration PlansIn consultation with the City of Ottawa and the SWM Working Group strategies for each

the SWM Working Group strategies for each subsequent phase of development and servicing will be developed including plans for subsequent phases of the LID Demonstration Project

Phase 3 - Specifics

In the fulfillment of Phase 3 of the Work Plan, the following tasks were completed.

- 1. Development of Typical LID Details
  Following the selection of the preferred LID
  controls for each land-use, typical LID design
  details will be prepared (i.e. preliminary
  design) in support of the CDP. LID
  Preliminary concepts will include:
  - a) Location of proposed LID,
  - b) Types of LIDs,
  - c) Targets and design criteria,
  - d) Anticipated performance of LIDs determined through modelling using the previously developed EPA-SWMM model (Phase 2).

### 2. LID Recommendations

At the conclusion of Phase 3, a comprehensive document will be prepared which will detail the results of Work Plan (Phases 1-3) and will conclude with implementation recommendations including but not limited to:

- a) By-law considerations
- b) Construction sequencing recommendations, protocols and erosion and sediment control requirements.

- c) Reporting considerations for privately owned facilities
- d) Assumption, operation and maintenance protocols (typical tasks, frequency and responsible party)
- e) Inspection recommendations

- f) Monitoring program recommendations based on project objectives and targets developed from Phase 2
- g) LID demonstration project reporting requirements
- h) Adaptive Management Process (feedback process) whereby

monitoring results are used to inform/refine future LID phases and used to refine modelling assumptions and SWM credits.

Aquafor Beech Ltd. February, 2015

Attachment B – Hydrologic Model (Pre-Development)

```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
    ****************
Analysis Options
Flow Units ..... CMS
Process Models:
 Rainfall/Runoff ..... YES
  Snowmelt ...... NO
  Groundwater ..... NO
 Flow Routing ..... YES Ponding Allowed ..... NO
  Water Quality ..... NO
Infiltration Method ..... GREEN_AMPT
Flow Routing Method ..... KINWAVE
Starting Date ..... AUG-01-1996 00:00:00
Ending Date ..... JAN-01-2014 06:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:15:00
Wet Time Step ..... 00:15:00
Dry Time Step ..... 01:00:00
Routing Time Step ...... 30.00 sec
******
Rainfall File Summary
*******
Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc.
        AUG-08-1996 DEC-31-2013 60 min 28488
                                     Depth
*******
                          Volume
Runoff Quantity Continuity hectare-m
                                     mm
*****
******
                          Volume
                                      Volume
                                   10^6 ltr
Flow Routing Continuity
                         hectare-m
Dry Weather Inflow .....
                            0.000
                                       0.000
                        992.447
                                   9924.573
Wet Weather Inflow .....
Groundwater Inflow .....
                                    0.000
                         0.000
0.000
0.000
RDII Inflow .....
                                      0.000
External Inflow .....
                        0.000
984.057
                                    9840.669
External Outflow .....
                          9.336
                                    93.357
Internal Outflow ......
Storage Losses ......
Initial Stored Volume ....
                           0.000
                                      0.000
Final Stored Volume .....
Final Stored Volume ..... 0.000
Continuity Error (%) ..... -0.095
```

\*\*\*\*\*\*\*\*\*

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.01

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 15454.66              | 0.00                 | 423.97              | 12215.04             | 2853.71               | 410.37                      | 1.14                  | 0.185           |
| EXT2         | 15454.66              | 0.00                 | 978.90              | 7619.12              | 6939.50               | 204.72                      | 0.28                  | 0.449           |
| BRSWM1       | 15454.66              | 0.00                 | 1059.20             | 7627.17              | 6853.37               | 723.72                      | 1.00                  | 0.443           |
| BRSWM2       | 15454.66              | 19250.81             | 1707.07             | 8318.19              | 24837.39              | 1515.09                     | 2.10                  | 0.716           |
| BRSWM3       | 15454.66              | 0.00                 | 1176.44             | 7019.39              | 7348.56               | 1174.31                     | 1.53                  | 0.475           |
| EXT3         | 15454.66              | 0.00                 | 429.51              | 12219.06             | 2843.68               | 522.96                      | 1.42                  | 0.184           |
| EXTW         | 15454.66              | 0.00                 | 225.91              | 13801.71             | 1446.36               | 266.28                      | 0.88                  | 0.094           |
| EXN          | 15454.66              | 0.00                 | 830.11              | 9724.26              | 4969.94               | 1806.09                     | 3.42                  | 0.322           |
| EXTN         | 15454.66              | 0.00                 | 292.53              | 13568.94             | 1625.97               | 387.31                      | 1.79                  | 0.105           |
| EXW1         | 15454.66              | 4003.33              | 1239.31             | 9215.03              | 9082.42               | 6730.11                     | 10.83                 | 0.467           |
| LIDPilot     | 15454.66              | 0.00                 | 454.98              | 12239.70             | 2796.35               | 324.38                      | 0.74                  | 0.181           |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
Node Depth Summary

| Node           | Туре     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | Occu | of Max<br>errence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------|
| 2              | JUNCTION | 0.02                       | 0.70                       | 1.00                     | 7    | 14:30                       |
| 1              | JUNCTION | 0.02                       | 0.70                       | 1.70                     | 7    | 14:23                       |
| 5              | JUNCTION | 0.00                       | 0.31                       | 5.31                     | 3623 | 17:00                       |
| 6              | JUNCTION | 0.00                       | 0.39                       | 3.39                     | 3623 | 17:00                       |
| WesternOutfall | OUTFALL  | 0.01                       | 0.64                       | 0.64                     | 3653 | 22:00                       |
| EasternOutfall | OUTFALL  | 0.00                       | 0.39                       | 1.39                     | 3623 | 17:00                       |

| Type                                        | Maximum<br>Lateral<br>Inflow<br>CMS                     | Maximum<br>Total<br>Inflow<br>CMS                                                              | 0ccur:                                                                                                                                                               | rence                            | Lateral<br>Inflow<br>Volume<br>10^6 ltr                                                               | Total<br>Inflow<br>Volume<br>10^6 ltr                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL | 0.883<br>12.679<br>3.416<br>1.788<br>0.000              | 5.521<br>12.679<br>3.416<br>5.205<br>5.520                                                     | 3623<br>3623<br>3623<br>3653                                                                                                                                         | 17:00<br>17:00<br>17:00<br>22:00 | 266.277<br>7464.858<br>1806.085<br>387.307<br>0.000                                                   | 7647.375<br>7464.858<br>1806.085<br>2193.094<br>7647.500                                                                                                                                                                                                                                                                                                                                     |
| OUTFALL                                     | 0.000                                                   | 5.192                                                                                          | 3623                                                                                                                                                                 | 17:00                            | 0.000                                                                                                 | 2193.124                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>OUTFALL | Lateral Inflow CMS  JUNCTION 0.883 JUNCTION 12.679 JUNCTION 3.416 JUNCTION 1.788 OUTFALL 0.000 | Lateral Inflow Inflow CMS         Total Inflow Inflow CMS           JUNCTION 0.883 JUNCTION 12.679 JUNCTION 3.416 JUNCTION 1.788 JUNCTION 1.788 JUNCTION 0.000 5.520 | Lateral   Total   Time o         | Lateral   Total   Time of Max   Inflow   Inflow   Occurrence   Occurrence   CMS   CMS   days   hr:min | Lateral Total Time of Max Inflow Inflow Occurrence         Inflow Volume 10^6 ltr           Type         CMS         CMS         days hr:min days hr:min 10^6 ltr           JUNCTION 0.883         5.521 3653 22:00 266.277 JUNCTION 12.679 12.679 3623 17:00 7464.858 JUNCTION 3.416 3.416 3623 17:00 1806.085 JUNCTION 1.788 5.205 3623 17:00 387.307 OUTFALL 0.000 5.520 3653 22:00 0.000 |

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Туре                 | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|------|----------------------|---------------------|--------------------------------------|-----------------------------------|
| 2    | JUNCTION<br>JUNCTION | 8.94<br>10.19       | 0.000                                | 0.000                             |

Flooding refers to all water that overflows a node, whether it ponds or not.

| Node | Hours<br>Flooded | Maximum<br>Rate<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Total<br>Flood<br>Volume<br>10^6 ltr | Maximum<br>Ponded<br>Volume<br>1000 m3 |
|------|------------------|------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| 1    | 10.19            | 8.009                  | 3623 17:00                               | 93.356                               | 0.000                                  |

|                | Flow  | Avg.  | Max.   | Total             |
|----------------|-------|-------|--------|-------------------|
|                | Freq. | Flow  | Flow   | Volume            |
| Outfall Node   | Pcnt. | CMS   | CMS    | 10 <b>^</b> 6 ltr |
| WesternOutfall | 27.64 | 0.050 | 5.520  | 7647.500          |
|                |       |       |        |                   |
| EasternOutfall | 20.36 | 0.020 | 5.192  | 2193.124          |
|                |       |       |        |                   |
| System         | 24.00 | 0.070 | 10.512 | 9840.624          |

| Link                 | Туре               | Maximum<br> Flow <br>CMS | Time of Occur days h | rence          | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|----------------------|--------------------|--------------------------|----------------------|----------------|-----------------------------|----------------------|-----------------------|
| Western2 Eastern1    | CHANNEL<br>CHANNEL | 5.520<br>3.418           |                      | 22:00<br>17:00 | 2.81<br>7.16                | 0.91<br>0.06         | 0.92<br>0.24          |
| Eastern2<br>Western1 | CHANNEL<br>CHANNEL | 5.192<br>4.765           |                      | 17:00<br>15:59 | 8.04                        | 0.09                 | 0.30                  |

| Conduit  |      | Hours Full<br>Upstream |      | Hours<br>Above Full<br>Normal Flow |       |
|----------|------|------------------------|------|------------------------------------|-------|
| Western1 | 8.67 | 10.09                  | 8.94 | 10.21                              | 10.09 |

Analysis begun on: Wed Feb 18 17:14:20 2015

Analysis ended on: Wed Feb 18 17:22:14 2015 Total elapsed time: 00:07:54

Page 4 SWMM 5

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units ..... CMS Process Models: Rainfall/Runoff ..... YES Snowmelt ..... NO Groundwater ..... NO Flow Routing ..... YES Ponding Allowed ..... NO

Water Quality ...... NO
Infiltration Method ..... GREEN\_AMPT

Flow Routing Method ..... KINWAVE

Starting Date ..... AUG-01-1996 00:00:00 Ending Date ..... JAN-01-2014 06:00:00

Antecedent Dry Days ..... 0.0 Report Time Step ..... 00:15:00 Wet Time Step ..... 00:15:00 Dry Time Step ...... 01:00:00
Routing Time Step ...... 30.00 sec

\*\*\*\*\*\*\* Rainfall File Summary

Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc. 1 AUG-08-1996 DEC-31-2013 60 min 28488 0

| *******                    | Volume    | Depth     |
|----------------------------|-----------|-----------|
| Runoff Quantity Continuity | hectare-m | mm        |
| *******                    |           |           |
| Total Precipitation        | 3595.989  | 15454.656 |
| Evaporation Loss           | 170.899   | 734.482   |
| Infiltration Loss          | 2953.427  | 12693.086 |
| Surface Runoff             | 486.490   | 2090.810  |
| Final Surface Storage      | 0.040     | 0.171     |
| Continuity Error (%)       | -0.413    |           |
|                            |           |           |
| *******                    | Volume    | Volume    |
| Flow Routing Continuity    | hectare-m | 10^6 ltr  |
| *******                    |           |           |
| Dry Weather Inflow         | 0.000     | 0.000     |

 

 Dry Weather Inflow
 0.000
 0.000

 Wet Weather Inflow
 486.490
 4864.948

 Groundwater Inflow
 0.000
 0.000

 RDII Inflow
 0.000
 0.000

 External Inflow
 0.000
 0.000

 External Outflow
 482.152
 4821.574

 Internal Outflow
 4.873
 48.726

 Storage Losses
 0.000
 0.000

 Initial Stored Volume
 0.000
 0.000

 Final Stored Volume
 0.000
 0.000

 Continuity Error (%)
 -0.110

 -0.110 Continuity Error (%) .....

\*\*\*\*\*\*\* Highest Flow Instability Indexes \*\*\*\*\*\*\*\*\*

All links are stable.

\*\*\*\*\*\*\*\* Routing Time Step Summary \*\*\*\*\*\*

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00

|              | Total        | Total       | Total      | Total       | Total        | Total              | Peak          | Runoff |
|--------------|--------------|-------------|------------|-------------|--------------|--------------------|---------------|--------|
| Subcatchment | Precip<br>mm | Runon<br>mm | Evap<br>mm | Infil<br>mm | Runoff<br>mm | Runoff<br>10^6 ltr | Runoff<br>CMS | Coeff  |
| EXT1         | 15454.66     | 0.00        | 610.19     | 12215.04    | 2687.48      | 386.46             | 1.14          | 0.174  |
| EXT2         | 15454.66     | 0.00        | 1456.21    | 7619.12     | 6524.68      | 192.48             | 0.28          | 0.422  |
| BRSWM1       | 15454.66     | 0.00        | 1514.30    | 7627.17     | 6434.81      | 679.52             | 1.00          | 0.416  |
| BRSWM2       | 15454.66     | 16771.03    | 1630.25    | 14953.71    | 15836.52     | 966.03             | 2.01          | 0.491  |
| BRSWM3       | 15454.66     | 0.00        | 1533.71    | 7630.58     | 6401.96      | 1023.04            | 1.50          | 0.414  |
| EXT3         | 15454.66     | 0.00        | 614.36     | 12219.06    | 2676.97      | 492.30             | 1.42          | 0.173  |
| EXW          | 15454.66     | 2717.57     | 654.27     | 14247.23    | 3320.43      | 2847.29            | 9.11          | 0.183  |
| EXTW         | 15454.66     | 0.00        | 319.77     | 13801.71    | 1363.37      | 251.00             | 0.88          | 0.088  |
| EXN          | 15454.66     | 0.00        | 683.89     | 12049.48    | 2786.52      | 1012.63            | 3.13          | 0.180  |
| EXTN         | 15454.66     | 0.00        | 388.06     | 13569.49    | 1543.03      | 367.55             | 1.79          | 0.100  |

| Node           | Туре     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | Occi | of Max<br>urrence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------|
| 2              | JUNCTION | 0.01                       | 0.70                       | 1.00                     | 7    | 14:59                       |
| 1              | JUNCTION | 0.01                       | 0.70                       | 1.70                     | 7    | 14:53                       |
| 5              | JUNCTION | 0.00                       | 0.30                       | 5.30                     | 3623 | 17:00                       |
| 6              | JUNCTION | 0.00                       | 0.38                       | 3.38                     | 3623 | 17:00                       |
| WesternOutfall | OUTFALL  | 0.01                       | 0.64                       | 0.64                     | 3653 | 22:00                       |
| EasternOutfall | OUTFALL  | 0.00                       | 0.38                       | 1.38                     | 3623 | 17:00                       |

| Node           | Type     | Maximum<br>Lateral<br>Inflow<br>CMS | Maximum<br>Total<br>Inflow<br>CMS | Time of Ma<br>Occurrence<br>days hr:m: | ce Volume   | Total<br>Inflow<br>Volume<br>10^6 ltr |
|----------------|----------|-------------------------------------|-----------------------------------|----------------------------------------|-------------|---------------------------------------|
| 2              | JUNCTION | 0.883                               | 5.521                             | 3653 22:                               | 00 250.998  | 3441.516                              |
| 1              | JUNCTION | 10.224                              | 10.224                            | 3653 21:0                              | 3233.750    | 3233.750                              |
| 5              | JUNCTION | 3.130                               | 3.130                             | 3623 17:0                              | 00 1012.627 | 1012.627                              |
| 6              | JUNCTION | 1.788                               | 4.915                             | 3623 17:                               | 367.551     | 1379.962                              |
| WesternOutfall | OUTFALL  | 0.000                               | 5.520                             | 3653 22:                               | 0.000       | 3441.605                              |
| EasternOutfall | OUTFALL  | 0.000                               | 4.911                             | 3623 17:0                              | 0.000       | 1379.947                              |

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

| Node   | Туре              | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|--------|-------------------|---------------------|--------------------------------------|-----------------------------------|
| 2<br>1 | JUNCTION JUNCTION | 5.53<br>5.90        | 0.000                                | 0.000                             |

Flooding refers to all water that overflows a node, whether it ponds or not.

Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Volume

| Node | Flooded | CMS   | days hr:min | 10 <b>^</b> 6 ltr | 1000 m3 |
|------|---------|-------|-------------|-------------------|---------|
| 1    | 5.90    | 5.578 | 3653 21:00  | 48.725            | 0.000   |

Outfall Loading Summary \*\*\*\*\*\*\*\*\*

| Outfall Node   | Flow  | Avg.  | Max.   | Total    |
|----------------|-------|-------|--------|----------|
|                | Freq. | Flow  | Flow   | Volume   |
|                | Pcnt. | CMS   | CMS    | 10^6 ltr |
| WesternOutfall | 24.74 | 0.025 | 5.520  | 3441.605 |
| EasternOutfall | 19.53 | 0.013 | 4.911  | 1379.947 |
| System         | 22.14 | 0.038 | 10.230 | 4821.552 |

\*\*\*\*\*\* Link Flow Summary

| Link                                | Туре    | Maximum<br> Flow <br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|-------------------------------------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------|
| Western2 Eastern1 Eastern2 Western1 | CHANNEL | 5.520                    | 3653 | 22:00                      | 2.81                        | 0.91                 | 0.92                  |
|                                     | CHANNEL | 3.128                    | 3623 | 17:00                      | 6.97                        | 0.06                 | 0.23                  |
|                                     | CHANNEL | 4.911                    | 3623 | 17:00                      | 7.91                        | 0.09                 | 0.29                  |
|                                     | CHANNEL | 4.763                    | 2961 | 11:16                      | 2.30                        | 1.03                 | 1.00                  |

Conduit Surcharge Summary

| Conduit  |      | Hours Full<br>Upstream |      | Hours<br>Above Full<br>Normal Flow | Hours<br>Capacity<br>Limited |
|----------|------|------------------------|------|------------------------------------|------------------------------|
| Western1 | 5.41 | 5.86                   | 5.53 | 5.94                               | 5.86                         |

Analysis begun on: Wed Feb 18 17:03:20 2015 Analysis ended on: Wed Feb 18 17:11:11 2015 Total elapsed time: 00:07:51

Page 3 SWMM 5



```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
    ****************
Analysis Options
Flow Units ..... CMS
Process Models:
  Rainfall/Runoff ..... YES
  Snowmelt ...... NO
  Groundwater ..... NO
  Flow Routing ..... YES Ponding Allowed ..... NO
  Water Quality ..... NO
Infiltration Method ..... GREEN_AMPT
Flow Routing Method ..... KINWAVE
Starting Date ..... AUG-01-1996 00:00:00
Ending Date ..... JAN-01-2014 06:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:15:00
Wet Time Step ..... 00:15:00
Dry Time Step ..... 01:00:00
Routing Time Step ...... 30.00 sec
******
Rainfall File Summary
*******
Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc.
         AUG-08-1996 DEC-31-2013 60 min 28488
                                           Depth
*******
                               Volume
Runoff Quantity Continuity hectare-m
                                          mm
Total Precipitation ... 3595.217 15454.656
Evaporation Loss ... 200.885 863.539
Infiltration Loss ... 2388.009 10265.265
Surface Runoff ... 1021.296 4390.215
Final Surface Storage 0.004 0.019
Continuity Error (%) -0.417
******
                              Volume
                                             Volume
                                          10^6 ltr
Flow Routing Continuity
                             hectare-m
*********
Dry Weather Inflow .....
                                0.000
                                             0.000
                                        10213.064
Groundwater Inflow ......
RDII Inflow
                              1021.296
                                          0.000
                             0.000
0.000
0.000
RDII Inflow .....
                                             0.000
External Inflow .....
                           0.000 0.000
1012.441 10124.514
9.813 98.132
0.000 0.000
External Outflow .....
Internal Outflow ......
Storage Losses ......
                               0.000
Initial Stored Volume ....
                                             0.000
Final Stored Volume .....
Continuity Error (%) ..... 0.000
```

\*\*\*\*\*\*\*\*\*

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.01

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 15454.66              | 0.00                 | 423.97              | 12215.04             | 2853.71               | 410.37                      | 1.14                  | 0.185           |
| EXT2         | 15454.66              | 0.00                 | 978.90              | 7619.12              | 6939.50               | 204.72                      | 0.28                  | 0.449           |
| BRSWM1       | 15454.66              | 0.00                 | 1059.20             | 7627.17              | 6853.37               | 723.72                      | 1.00                  | 0.443           |
| BRSWM2       | 15454.66              | 19250.81             | 1707.07             | 8318.19              | 24837.39              | 1515.09                     | 2.10                  | 0.716           |
| BRSWM3       | 15454.66              | 0.00                 | 1176.44             | 7019.39              | 7348.56               | 1174.31                     | 1.53                  | 0.475           |
| EXT3         | 15454.66              | 0.00                 | 429.51              | 12219.06             | 2843.68               | 522.96                      | 1.42                  | 0.184           |
| EXTW         | 15454.66              | 0.00                 | 225.91              | 13801.71             | 1446.36               | 266.28                      | 0.88                  | 0.094           |
| EXN          | 15454.66              | 0.00                 | 830.11              | 9724.26              | 4969.94               | 1806.09                     | 3.42                  | 0.322           |
| EXTN         | 15454.66              | 0.00                 | 292.53              | 13568.94             | 1625.97               | 387.31                      | 1.79                  | 0.105           |
| EXW1         | 15454.66              | 4003.33              | 1239.31             | 9215.03              | 9082.42               | 6730.11                     | 10.83                 | 0.467           |
| LIDPilot     | 15454.66              | 0.00                 | 903.31              | 9327.81              | 5283.31               | 612.87                      | 0.90                  | 0.342           |

| Node           | Type     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | 0ccu | of Max<br>rrence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|----------------------------|
| 2              | JUNCTION | 0.02                       | 0.70                       | 1.00                     | 7    | 14:27                      |
| 1              | JUNCTION | 0.02                       | 0.70                       | 1.70                     | 7    | 14:20                      |
| 5              | JUNCTION | 0.00                       | 0.31                       | 5.31                     | 3623 | 17:00                      |
| 6              | JUNCTION | 0.00                       | 0.39                       | 3.39                     | 3623 | 17:00                      |
| WesternOutfall | OUTFALL  | 0.02                       | 0.64                       | 0.64                     | 3653 | 22:00                      |
| EasternOutfall | OUTFALL  | 0.00                       | 0.39                       | 1.39                     | 3623 | 17:00                      |

| Node                                  | Type                                                | Maximum<br>Lateral<br>Inflow<br>CMS                 | Maximum<br>Total<br>Inflow<br>CMS          | 0ccu                                         | of Max<br>rrence<br>hr:min                | Lateral<br>Inflow<br>Volume<br>10^6 ltr             | Total<br>Inflow<br>Volume<br>10^6 ltr                                |
|---------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
| 2 1 5 6 WesternOutfall EasternOutfall | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL | 0.883<br>12.871<br>3.416<br>1.788<br>0.000<br>0.000 | 5.521<br>12.871<br>3.416<br>5.205<br>5.520 | 3653<br>3623<br>3623<br>3623<br>3653<br>3623 | 22:00<br>17:00<br>17:00<br>17:00<br>22:00 | 266.277<br>7753.348<br>1806.085<br>387.307<br>0.000 | 7931.218<br>7753.348<br>1806.085<br>2193.094<br>7931.344<br>2193.124 |

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Type                 | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|------|----------------------|---------------------|--------------------------------------|-----------------------------------|
| 2    | JUNCTION<br>JUNCTION | 9.50<br>10.72       | 0.000                                | 0.000                             |

Flooding refers to all water that overflows a node, whether it ponds or not.

| Node | Hours<br>Flooded | Maximum<br>Rate<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Total<br>Flood<br>Volume<br>10^6 ltr | Maximum<br>Ponded<br>Volume<br>1000 m3 |
|------|------------------|------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| 1    | 10.72            | 8.202                  | 3623 17:00                               | 98.132                               | 0.000                                  |

|                                  | Flow<br>Freq.  | Avg.<br>Flow   | Max.<br>Flow   | Total<br>Volume      |
|----------------------------------|----------------|----------------|----------------|----------------------|
| Outfall Node                     | Pcnt.          | CMS            | CMS            | 10 <b>^</b> 6 ltr    |
| WesternOutfall<br>EasternOutfall | 27.77<br>20.36 | 0.052<br>0.020 | 5.520<br>5.192 | 7931.344<br>2193.124 |
| System                           | 24.07          | 0.072          | 10.512         | 10124.467            |

| Link     | Туре    | Maximum<br> Flow <br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------|
| Western2 | CHANNEL | 5.520                    | 3653 | 22:00                      | 2.81                        | 0.91                 | 0.92                  |
| Eastern1 | CHANNEL | 3.418                    | 3623 | 17:00                      | 7.16                        |                      | 0.24                  |
| Eastern2 | CHANNEL | 5.192                    | 3623 | 17:00                      | 8.04                        | 0.09                 | 0.30                  |
| Western1 | CHANNEL | 4.765                    | 5870 | 13:05                      | 2.38                        | 1.03                 |                       |

| Conduit  |      | Hours Full<br>Upstream |      | Hours<br>Above Full<br>Normal Flow |       |
|----------|------|------------------------|------|------------------------------------|-------|
| Western1 | 9.21 | 10.62                  | 9.50 | 10.76                              | 10.62 |

Analysis begun on: Wed Feb 18 17:34:21 2015

Analysis ended on: Wed Feb 18 17:42:06 2015 Total elapsed time: 00:07:45

Page 4 SWMM 5

```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
   ****************
Analysis Options
Flow Units ..... CMS
Process Models:
 Rainfall/Runoff ..... YES
 Snowmelt ...... NO
 Groundwater ..... NO
 Flow Routing ..... YES Ponding Allowed ..... NO
 Water Quality ..... NO
Infiltration Method ..... GREEN_AMPT
Flow Routing Method ..... KINWAVE
Starting Date ..... AUG-01-1996 00:00:00
Ending Date ..... JAN-01-2014 06:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:15:00
Wet Time Step ..... 00:15:00
Dry Time Step ..... 01:00:00
Routing Time Step ...... 30.00 sec
******
Rainfall File Summary
*******
Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc.
        AUG-08-1996 DEC-31-2013 60 min 28488
                                     Depth
*******
                          Volume
Runoff Quantity Continuity hectare-m
                                    mm
******
******
                          Volume
                                      Volume
                                    10^6 ltr
Flow Routing Continuity
                         hectare-m
*********
Dry Weather Inflow .....
                           0.000
                                      0.000
                                  10153.517
Groundwater Inflow ..... 1015.341
Groundwater Inflow ..... 0.000
RDII Inflow
                                    0.000
                         0.000
0.000
0.000
                                      0.000
RDII Inflow .....
External Inflow .....
                       0.000 0.000
1006.737 10067.471
External Outflow .....
                         9.529
                                    95.291
0.000
Internal Outflow ......
Storage Losses ......
Initial Stored Volume ....
                           0.000
                                      0.000
Final Stored Volume .....
```

Continuity Error (%) ..... -0.091

All links are stable.

\*\*\*\*\*\*

Routing Time Step Summary

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Minimum Time Step : 30.00 sec

Average Time Step : 30.00 sec

Maximum Time Step : 30.00 sec

Percent in Steady State : 0.00

Average Iterations per Step : 1.01

\*\*\*\*\*\*\* Subcatchment Runoff Summary

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 15454.66              | 0.00                 | 423.97              | 12215.04             | 2853.71               | 410.37                      | 1.14                  | 0.185           |
| EXT2         | 15454.66              | 0.00                 | 978.90              | 7619.12              | 6939.50               | 204.72                      | 0.28                  | 0.449           |
| BRSWM1       | 15454.66              | 0.00                 | 1059.20             | 7627.17              | 6853.37               | 723.72                      | 1.00                  | 0.443           |
| BRSWM2       | 15454.66              | 19250.81             | 1707.07             | 8318.19              | 24837.39              | 1515.09                     | 2.10                  | 0.716           |
| BRSWM3       | 15454.66              | 0.00                 | 1176.44             | 7019.39              | 7348.56               | 1174.31                     | 1.53                  | 0.475           |
| EXT3         | 15454.66              | 0.00                 | 429.51              | 12219.06             | 2843.68               | 522.96                      | 1.42                  | 0.184           |
| EXW          | 15454.66              | 3459.44              | 1205.38             | 9288.93              | 8493.75               | 7283.44                     | 11.57                 | 0.449           |
| EXTW         | 15454.66              | 0.00                 | 225.91              | 13801.71             | 1446.36               | 266.28                      | 0.88                  | 0.094           |
| EXN          | 15454.66              | 0.00                 | 829.88              | 9724.21              | 4969.94               | 1806.09                     | 3.42                  | 0.322           |
| EXTN         | 15454.66              | 0.00                 | 292.64              | 13568.83             | 1625.97               | 387.31                      | 1.79                  | 0.105           |

\*\*\*\*\*\* Node Depth Summary

| Node                             | Type                                        | Average<br>Depth<br>Meters   | Maximum<br>Depth<br>Meters   | Maximum<br>HGL<br>Meters     | 0ccu                           | of Max<br>rrence<br>hr:min                |
|----------------------------------|---------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------------------|
| 2<br>1<br>5<br>6                 | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL | 0.02<br>0.02<br>0.00<br>0.00 | 0.70<br>0.70<br>0.31<br>0.39 | 1.00<br>1.70<br>5.31<br>3.39 | 7<br>7<br>3623<br>3623<br>3653 | 14:28<br>14:21<br>17:00<br>17:00<br>22:00 |
| WesternOutfall<br>EasternOutfall | OUTFALL                                     | 0.02                         | 0.64                         | 1.39                         | 3623                           | 17:00                                     |

Node Inflow Summary \*\*\*\*\*\*\*\*

| Node           | Туре                       | Maximum<br>Lateral<br>Inflow<br>CMS | Maximum<br>Total<br>Inflow<br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Lateral<br>Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr |
|----------------|----------------------------|-------------------------------------|-----------------------------------|------|----------------------------|-----------------------------------------|---------------------------------------|
| 2              | JUNCTION JUNCTION JUNCTION | 0.883                               | 5.521                             | 3653 | 22:00                      | 266.277                                 | 7874.177                              |
| 1              |                            | 12.708                              | 12.708                            | 3623 | 17:00                      | 7693.802                                | 7693.802                              |
| 5              |                            | 3.416                               | 3.416                             | 3623 | 17:00                      | 1806.085                                | 1806.085                              |
| 6              | JUNCTION                   | 1.788                               | 5.205                             | 3623 | 17:00                      | 387.307                                 | 2193.094                              |
| WesternOutfall | OUTFALL                    | 0.000                               | 5.520                             | 3653 | 22:00                      | 0.000                                   | 7874.302                              |
| EasternOutfall | OUTFALL                    | 0.000                               | 5.192                             | 3623 | 17:00                      | 0.000                                   | 2193.124                              |

\*\*\*\*\*\*

Page 2 SWMM 5

# Node Surcharge Summary \*\*\*\*\*\*\*\*\*

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Туре                 | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|------|----------------------|---------------------|--------------------------------------|-----------------------------------|
| 2    | JUNCTION<br>JUNCTION | 9.21<br>10.44       | 0.000                                | 0.000                             |

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

| Node | Hours<br>Flooded | Maximum<br>Rate<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Total<br>Flood<br>Volume<br>10^6 ltr | Maximum<br>Ponded<br>Volume<br>1000 m3 |
|------|------------------|------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| 1    | 10.44            | 8.038                  | 3623 17:00                               | 95.291                               | 0.000                                  |

| Outfall Node   | Flow  | Avg.  | Max.   | Total     |
|----------------|-------|-------|--------|-----------|
|                | Freq. | Flow  | Flow   | Volume    |
|                | Pcnt. | CMS   | CMS    | 10^6 ltr  |
| WesternOutfall | 28.06 | 0.051 | 5.520  | 7874.302  |
| EasternOutfall | 20.36 | 0.020 | 5.192  | 2193.124  |
| System         | 24.21 | 0.071 | 10.512 | 10067.425 |

| Link     | Type    | Maximum<br> Flow <br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------|
| Western2 | CHANNEL | 5.520                    | 3653 | 22:00                      | 2.81                        | 0.91                 | 0.92                  |
| Eastern1 | CHANNEL | 3.418                    | 3623 | 17:00                      | 7.16                        | 0.06                 | 0.24                  |
| Eastern2 | CHANNEL | 5.192                    | 3623 | 17:00                      | 8.04                        | 0.09                 | 0.30                  |
| Western1 | CHANNEL | 4.766                    | 5870 | 12:51                      | 2.38                        | 1.03                 | 1.00                  |

| Conduit  |      | Hours Full<br>Upstream |      | Hours<br>Above Full<br>Normal Flow |       |
|----------|------|------------------------|------|------------------------------------|-------|
| Western1 | 8.92 | 10.34                  | 9.21 | 10.49                              | 10.34 |

Analysis begun on: Wed Feb 18 17:24:27 2015 Analysis ended on: Wed Feb 18 17:32:12 2015

Total elapsed time: 00:07:45

Attachment D- Hydrologic Model (Post Development LID Control)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

\*\*\*\*\*\*

Analysis Options

Flow Units ..... CMS Process Models: Rainfall/Runoff ..... YES Snowmelt ..... NO  ${\tt Groundwater}~\dots {\tt NO}$ Flow Routing ..... YES Ponding Allowed ..... NO

Water Quality ...... NO
Infiltration Method ..... GREEN\_AMPT Flow Routing Method ..... KINWAVE

Starting Date ...... AUG-01-1996 00:00:00 Ending Date ...... JAN-01-2014 06:00:00

Antecedent Dry Days ..... 0.0 Report Time Step ..... 00:15:00 Wet Time Step ..... 00:15:00

Dry Time Step ...... 01:00:00
Routing Time Step ...... 30.00 sec

\*\*\*\*\*\*\*

Element Count

Number of rain gages ..... 1 Number of subcatchments ... 11 Number of nodes ...... 6 Number of links ..... 4 Number of pollutants ..... 0
Number of land uses ..... 0

\*\*\*\*\*\* Raingage Summary

Data Recording
Type Interval Data Source

C:\Users\Ashraf\Desktop\CLC\Climate data\RainfallData\_101ROPEC\_24Sept14.dat

\*\*\*\*\*\* Subcatchment Summary \*\*\*\*\*\*\*\*\*\*\*\*

| Name     | Area  | Width   | %Imperv | %Slope | Rain Gage | Outlet |  |
|----------|-------|---------|---------|--------|-----------|--------|--|
| EXT1     | 14.38 | 2000.00 | 20.00   | 2.0000 | 1         | <br>1  |  |
| EXT2     | 2.95  | 2000.00 | 50.00   | 2.0000 | 1         | EXW1   |  |
| BRSWM1   | 10.56 | 2000.00 | 50.00   | 2.0000 | 1         | EXW1   |  |
| BRSWM2   | 6.10  | 2000.00 | 74.00   | 2.0000 | 1         | EXW1   |  |
| BRSWM3   | 15.98 | 2000.00 | 54.00   | 2.0000 | 1         | BRSWM2 |  |
| EXT3     | 18.39 | 2043.00 | 20.00   | 2.0000 | 1         | EXW1   |  |
| EXTW     | 18.41 | 1473.00 | 10.00   | 2.0000 | 1         | 2      |  |
| EXN      | 36.34 | 3028.00 | 35.40   | 2.0000 | 1         | 5      |  |
| EXTN     | 23.82 | 2382.00 | 10.00   | 2.0000 | 1         | 6      |  |
| EXW1     | 74.10 | 3920.00 | 51.50   | 2.0000 | 1         | 1      |  |
| LIDPilot | 11.60 | 500.00  | 39.00   | 2.0000 | 1         | 1      |  |

\*\*\*\*\*\* LID Control Summary

| Subcatchment | LID Control    | No. of<br>Units | Unit<br>Area | Unit<br>Width | % Area<br>Covered | % Imperv<br>Treated |
|--------------|----------------|-----------------|--------------|---------------|-------------------|---------------------|
| LIDPilot     | Bioswale       | 5               | 250.00       | 6.00          | 1.08              | 15.00               |
| LIDPilot     | VegetatedSwale | 5               | 250.00       | 6.00          | 1.08              | 15.00               |

Node Summary

SWMM 5

| Node Summary           |                |                  |                   |                  |                |               |                    |               |
|------------------------|----------------|------------------|-------------------|------------------|----------------|---------------|--------------------|---------------|
| Name                   | T              | Ype              | Inver<br>Elev     |                  | ax. P<br>pth   | onded<br>Area | External<br>Inflow |               |
| <br>2                  |                | UNCTION          | 0.3               | 0 0              | <br>.70        | 0.0           |                    |               |
| 1                      |                | UNCTION          | 1.0               | 0 0              | .70            | 0.0           |                    |               |
| 5<br>6                 |                | UNCTION          | 5.0<br>3.0        |                  | .30            | 0.0           |                    |               |
| WesternOutfal          | _              | UTFALL           | 0.0               |                  | .70            | 0.0           |                    |               |
| EasternOutfal          | 1 0            | UTFALL           | 1.0               | 0 1              | .30            | 0.0           |                    |               |
| *****                  |                |                  |                   |                  |                |               |                    |               |
| Link Summary           |                |                  |                   |                  |                |               |                    |               |
| Name                   | From           | Node             | To Node           | Туре             |                | Length        | %Slope             | Roughness     |
| <br>Western2           | 2              |                  | <br>WesternOutfal | 1 CONDU          | <br>тт         | 100.0         | 0.3000             | 0.0100        |
| Eastern1               | 5              |                  | 6                 | CONDU            |                | 50.0          |                    | 0.0100        |
| Eastern2               | 6<br>1         |                  | EasternOutfal     |                  |                | 50.0          |                    | 0.0100        |
| Westernl               | 1              |                  | 2                 | CONDU            | 11             | 400.0         | 0.1750             | 0.0100        |
| *****                  | *****          |                  |                   |                  |                |               |                    |               |
| Cross Section          |                |                  |                   |                  |                |               |                    |               |
| Conduit                | Shap           | pe               | Full<br>Depth     | Full<br>Area     | Hyd.<br>Rad.   | Max.<br>Width | No. of<br>Barrels  | Full<br>Flow  |
| Western2               | West           | ern2             | 0.70              | 2.35             | 0.32           | 7.00          | 1                  | 6.07          |
| Eastern1               |                | ern1             | 1.30              | 4.00             | 0.59           | 6.00          | 1                  | 56.19         |
| Eastern2<br>Western1   |                | ern2<br>ern1     | 1.30<br>0.70      | 4.00<br>2.35     | 0.59           | 6.00<br>7.00  | 1<br>1             | 56.19<br>4.64 |
| Transect Summ *******  |                |                  |                   |                  |                |               |                    |               |
| Transect West<br>Area: | ern1           |                  |                   |                  |                |               |                    |               |
|                        | .0008          | 0.0033           | 0.0075            | 0.0133           | 0.020          |               |                    |               |
|                        | .0300          | 0.0409<br>0.1057 | 0.0529<br>0.1200  | 0.0654<br>0.1347 | 0.078<br>0.149 |               |                    |               |
| 0                      | .1655          | 0.1816           | 0.1981            | 0.2151           | 0.232          | :5            |                    |               |
|                        | .2504          | 0.2687<br>0.3668 | 0.2874<br>0.3878  | 0.3066<br>0.4092 | 0.326<br>0.431 |               |                    |               |
|                        | .4534          | 0.4761           | 0.4993            | 0.5230           | 0.547          |               |                    |               |
|                        | .5716          | 0.5966           | 0.6220            | 0.6478           | 0.674          |               |                    |               |
|                        | .7009<br>.8488 | 0.7281<br>0.8837 | 0.7558<br>0.9205  | 0.7848<br>0.9593 | 0.815<br>1.000 |               |                    |               |
| Hrad:                  |                |                  |                   |                  |                |               |                    |               |
|                        | .0214          | 0.0428<br>0.1499 | 0.0643<br>0.1840  | 0.0857<br>0.2191 | 0.107          |               |                    |               |
|                        | .2862          | 0.1499           | 0.1840            | 0.2191           | 0.410          |               |                    |               |
| 0                      | .4400          | 0.4689           | 0.4973            | 0.5253           | 0.552          | 19            |                    |               |
|                        | .5801<br>.7111 | 0.6069<br>0.7365 | 0.6334<br>0.7617  | 0.6596<br>0.7867 | 0.685<br>0.811 |               |                    |               |
|                        | .8360          | 0.7363           | 0.8845            | 0.7867           | 0.932          |               |                    |               |
| 0                      | .9563          | 0.9799           | 1.0034            | 1.0268           | 1.050          | 0             |                    |               |
|                        | .0732          | 1.0962<br>1.1093 | 1.1156<br>1.1090  | 1.1135<br>1.1093 | 1.111          |               |                    |               |
| Width:                 |                |                  |                   |                  |                |               |                    |               |
|                        | .0400          | 0.0800           | 0.1200            | 0.1600           | 0.200          |               |                    |               |
|                        | .2400          | 0.2800<br>0.3375 | 0.2949<br>0.3482  | 0.3055<br>0.3589 | 0.316          |               |                    |               |
| 0                      | .3802          | 0.3909           | 0.4015            | 0.4122           | 0.422          | 19            |                    |               |
|                        | .4335          | 0.4442<br>0.4975 | 0.4549<br>0.5082  | 0.4655<br>0.5189 | 0.476<br>0.529 |               |                    |               |
|                        | .5402          | 0.4975           | 0.5082            | 0.5189           | 0.529          |               |                    |               |
| 0                      | .5935          | 0.6042           | 0.6149            | 0.6255           | 0.636          | 2             |                    |               |
|                        | .6469<br>.8133 | 0.6575<br>0.8600 | 0.6733<br>0.9067  | 0.7200<br>0.9533 | 0.766<br>1.000 |               |                    |               |
| Transect West          |                |                  |                   |                  |                |               |                    |               |
| Area:                  | .0008          | 0.0033           | 0.0075            | 0.0133           | 0.020          | 9             |                    |               |
|                        | .0300          | 0.0409           | 0.0529            | 0.0654           | 0.078          |               |                    |               |
|                        | .0918<br>.1655 | 0.1057<br>0.1816 | 0.1200<br>0.1981  | 0.1347<br>0.2151 | 0.149<br>0.232 |               |                    |               |
| WMM 5                  |                | 0.1010           | 0.1701            | ·                | 0.232          |               |                    |               |

Page 2

| Hrad:             | 0.2504<br>0.3463<br>0.4534<br>0.5716<br>0.7009<br>0.8488                                         | 0.2687<br>0.3668<br>0.4761<br>0.5966<br>0.7281<br>0.8837                                         | 0.2874<br>0.3878<br>0.4993<br>0.6220<br>0.7558<br>0.9205                                         | 0.3066<br>0.4092<br>0.5230<br>0.6478<br>0.7848<br>0.9593                                         | 0.3262<br>0.4311<br>0.5471<br>0.6742<br>0.8158<br>1.0000                                         |
|-------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Width:            | 0.0214<br>0.1285<br>0.2862<br>0.4400<br>0.5801<br>0.7111<br>0.8360<br>0.9563<br>1.0732<br>1.1103 | 0.0428<br>0.1499<br>0.3183<br>0.4689<br>0.6069<br>0.7365<br>0.8603<br>0.9799<br>1.0962<br>1.1093 | 0.0643<br>0.1840<br>0.3497<br>0.4973<br>0.6334<br>0.7617<br>0.8845<br>1.0034<br>1.1156<br>1.1090 | 0.0857<br>0.2191<br>0.3804<br>0.5253<br>0.6596<br>0.7867<br>0.9086<br>1.0268<br>1.1135<br>1.1093 | 0.1071<br>0.2531<br>0.4105<br>0.5529<br>0.6855<br>0.8114<br>0.9325<br>1.0500<br>1.1117<br>1.0000 |
| widen.            | 0.0400<br>0.2400<br>0.3269<br>0.3802<br>0.4335<br>0.4869<br>0.5402<br>0.5935<br>0.6469<br>0.8133 | 0.0800<br>0.2800<br>0.3375<br>0.3909<br>0.4442<br>0.4975<br>0.5509<br>0.6042<br>0.6575<br>0.8600 | 0.1200<br>0.2949<br>0.3482<br>0.4015<br>0.4549<br>0.5082<br>0.5615<br>0.6149<br>0.6733<br>0.9067 | 0.1600<br>0.3055<br>0.3589<br>0.4122<br>0.4655<br>0.5189<br>0.5722<br>0.6255<br>0.7200<br>0.9533 | 0.2000<br>0.3162<br>0.3695<br>0.4229<br>0.4762<br>0.5295<br>0.5829<br>0.6362<br>0.7667<br>1.0000 |
| Transect<br>Area: | Easternl                                                                                         |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
| Hrad:             | 0.0068<br>0.0491<br>0.1056<br>0.1761<br>0.2607<br>0.3591<br>0.4697<br>0.5923<br>0.7271<br>0.8739 | 0.0141<br>0.0593<br>0.1186<br>0.1919<br>0.2793<br>0.3802<br>0.4932<br>0.6183<br>0.7555<br>0.9047 | 0.0220<br>0.0700<br>0.1321<br>0.2083<br>0.2985<br>0.4019<br>0.5173<br>0.6448<br>0.7843<br>0.9360 | 0.0305<br>0.0813<br>0.1462<br>0.2252<br>0.3182<br>0.4240<br>0.5418<br>0.6717<br>0.8137<br>0.9677 | 0.0395<br>0.0932<br>0.1609<br>0.2427<br>0.3384<br>0.4466<br>0.5668<br>0.6991<br>0.8435<br>1.0000 |
| пгац.             | 0.0417                                                                                           | 0.0796                                                                                           | 0.1145                                                                                           | 0.1472                                                                                           | 0.1779                                                                                           |
| Width:            | 0.2072<br>0.3387<br>0.4558<br>0.5656<br>0.6761<br>0.7853<br>0.8908<br>0.9934<br>1.0939           | 0.2353<br>0.3629<br>0.4782<br>0.5870<br>0.6983<br>0.8067<br>0.9115<br>1.0137                     | 0.2623<br>0.3867<br>0.5004<br>0.6082<br>0.7203<br>0.8279<br>0.9321<br>1.0338<br>1.1337           | 0.2884<br>0.4101<br>0.5223<br>0.6310<br>0.7422<br>0.8490<br>0.9526<br>1.0539<br>1.1535           | 0.3139<br>0.4331<br>0.5440<br>0.6536<br>0.7638<br>0.8699<br>0.9731<br>1.0740                     |
| widdii.           | 0.1811                                                                                           | 0.1956                                                                                           | 0.2100                                                                                           | 0.2244                                                                                           | 0.2389                                                                                           |
|                   | 0.2533<br>0.3256<br>0.3978<br>0.4700<br>0.5362<br>0.5981<br>0.6600<br>0.7219<br>0.7838           | 0.2678<br>0.3400<br>0.4122<br>0.4844<br>0.5486<br>0.6105<br>0.6724<br>0.7343<br>0.7962           | 0.2822<br>0.3544<br>0.4267<br>0.4989<br>0.5610<br>0.6229<br>0.6848<br>0.7467<br>0.8086           | 0.2967<br>0.3689<br>0.4411<br>0.5114<br>0.5733<br>0.6352<br>0.6971<br>0.7590<br>0.8210           | 0.3111<br>0.3833<br>0.4556<br>0.5238<br>0.5857<br>0.6476<br>0.7095<br>0.7714<br>1.0000           |
| Transect          | Eastern2                                                                                         |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
| Area:             | 0.0068<br>0.0491<br>0.1056<br>0.1761<br>0.2607<br>0.3591<br>0.4697<br>0.5923<br>0.7271<br>0.8739 | 0.0141<br>0.0593<br>0.1186<br>0.1919<br>0.2793<br>0.3802<br>0.4932<br>0.6183<br>0.7555<br>0.9047 | 0.0220<br>0.0700<br>0.1321<br>0.2083<br>0.2985<br>0.4019<br>0.5173<br>0.6448<br>0.7843<br>0.9360 | 0.0305<br>0.0813<br>0.1462<br>0.2252<br>0.3182<br>0.4240<br>0.5418<br>0.6717<br>0.8137<br>0.9677 | 0.0395<br>0.0932<br>0.1609<br>0.2427<br>0.3384<br>0.4466<br>0.5668<br>0.6991<br>0.8435           |
| Hrad:             | 0.0417<br>0.2072<br>0.3387<br>0.4558<br>0.5656                                                   | 0.0796<br>0.2353<br>0.3629<br>0.4782<br>0.5870                                                   | 0.1145<br>0.2623<br>0.3867<br>0.5004<br>0.6082                                                   | 0.1472<br>0.2884<br>0.4101<br>0.5223<br>0.6310                                                   | 0.1779<br>0.3139<br>0.4331<br>0.5440<br>0.6536                                                   |
| `                 |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |

| Width:<br>Transect<br>Area:                                                                                                    | 0.6761<br>0.7853<br>0.8908<br>0.9934<br>1.0939<br>0.1811<br>0.2533<br>0.3256<br>0.3978<br>0.4700<br>0.5362<br>0.5981<br>0.6600<br>0.7219<br>0.7838<br>Western<br>0.0008<br>0.0300<br>0.0918<br>0.1655 | 0.6983<br>0.8067<br>0.9115<br>1.0137<br>1.1138<br>0.1956<br>0.2678<br>0.3400<br>0.4122<br>0.4844<br>0.5486<br>0.6105<br>0.6724<br>0.7343<br>0.7962 | 0.7203<br>0.8279<br>0.9321<br>1.0338<br>1.1337<br>0.2100<br>0.2822<br>0.3544<br>0.4267<br>0.4989<br>0.5610<br>0.6229<br>0.6848<br>0.7467<br>0.8086 | 0.8<br>0.9<br>1.0<br>1.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7<br>0.8 | 535<br>244<br>967<br>689<br>411<br>114<br>733<br>352<br>971<br>590<br>210   | 0.7638<br>0.8699<br>0.9731<br>1.0740<br>1.0000<br>0.2389<br>0.3111<br>0.3833<br>0.4556<br>0.5238<br>0.5857<br>0.6476<br>0.7095<br>0.7714<br>1.0000<br>0.0209<br>0.0784<br>0.1499<br>0.2325 |                     |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                | 0.2504<br>0.3463<br>0.4534<br>0.5716<br>0.7009                                                                                                                                                        | 0.2687<br>0.3668<br>0.4761<br>0.5966<br>0.7281                                                                                                     | 0.2874<br>0.3878<br>0.4993<br>0.6220<br>0.7558                                                                                                     | 0.4<br>0.5<br>0.6<br>0.7                                                  | 066<br>092<br>230<br>478<br>848                                             | 0.3262<br>0.4311<br>0.5471<br>0.6742<br>0.8158                                                                                                                                             |                     |
| Hrad:                                                                                                                          | 0.8488<br>0.0214<br>0.1285<br>0.2862<br>0.4400<br>0.5801<br>0.7111<br>0.8360<br>0.9563<br>1.0732<br>1.1103                                                                                            | 0.8837<br>0.0428<br>0.1499<br>0.3183<br>0.4689<br>0.6069<br>0.7365<br>0.8603<br>0.9799<br>1.0962<br>1.1093                                         | 0.9205<br>0.0643<br>0.1840<br>0.3497<br>0.6334<br>0.7617<br>0.8845<br>1.0034<br>1.1156<br>1.1090                                                   | 0.0<br>0.2<br>0.3<br>0.5<br>0.6<br>0.7<br>0.9<br>1.0                      |                                                                             | 1.0000<br>0.1071<br>0.2531<br>0.4105<br>0.5529<br>0.6855<br>0.8114<br>0.9325<br>1.0500<br>1.1117<br>1.0000                                                                                 |                     |
| Width:                                                                                                                         | 0.0400<br>0.2400<br>0.3269<br>0.3802<br>0.4335<br>0.4869<br>0.5402<br>0.5935<br>0.6469<br>0.8133                                                                                                      | 0.0800<br>0.2800<br>0.3375<br>0.3909<br>0.4442<br>0.4975<br>0.5509<br>0.6042<br>0.6575<br>0.8600                                                   | 0.1200<br>0.2949<br>0.3482<br>0.4015<br>0.4549<br>0.5082<br>0.5615<br>0.6149<br>0.6733<br>0.9067                                                   | 0.3<br>0.3<br>0.4<br>0.4<br>0.5<br>0.5                                    | 600<br>055<br>589<br>122<br>655<br>189<br>722<br>255<br>200<br>533          | 0.2000<br>0.3162<br>0.3695<br>0.4229<br>0.4762<br>0.5295<br>0.5829<br>0.6362<br>0.7667<br>1.0000                                                                                           |                     |
| Rainfall                                                                                                                       | ************ File Summary ******* First Date                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                    | _                                                                         | Periods<br>w/Precip                                                         |                                                                                                                                                                                            | Periods<br>Malfunc. |
| 1                                                                                                                              | AUG-08-199                                                                                                                                                                                            | 6 DEC-31                                                                                                                                           | -2013                                                                                                                                              | <br>60 min                                                                | 28488                                                                       | 0                                                                                                                                                                                          | 0                   |
| Runoff Qu ******** Initial L Total Pre Evaporati Infiltrat Surface R Final Sur Continuit  ******* Flow Rout ******** Dry Weath | ********** antity Conti ******** ID Storage . cipitation . on Loss ion Loss inface Storage y Error (%)  ********* ing Continui ********* er Inflow er Inflow                                          | nuity ****  ****  ty ****                                                                                                                          | Volume hectare-m 0.005 3595.217 202.802 2426.025 981.441 0.011 -0.419  Volume hectare-m 0.000 981.441                                              | 104<br>42                                                                 | Depth mm 0.020 54.656 71.779 28.685 18.891 0.046 Volume ^6 ltr 0.000 14.507 |                                                                                                                                                                                            |                     |
| Groundwat<br>RDII Infl                                                                                                         | er Inflow er Inflow ow Inflow                                                                                                                                                                         |                                                                                                                                                    | 981.441<br>0.000<br>0.000<br>0.000                                                                                                                 | 98                                                                        | 14.507<br>0.000<br>0.000<br>0.000                                           |                                                                                                                                                                                            |                     |

| External Outflow      | 972.715 | 9727.252 |
|-----------------------|---------|----------|
| Internal Outflow      | 9.645   | 96.450   |
| Storage Losses        | 0.000   | 0.000    |
| Initial Stored Volume | 0.000   | 0.000    |
| Final Stored Volume   | 0.000   | 0.001    |
| Continuity Error (%)  | -0.094  |          |

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.01

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 15454.66              | 0.00                 | 423.97              | 12215.04             | 2853.71               | 410.37                      | 1.14                  | 0.185           |
| EXT2         | 15454.66              | 0.00                 | 978.90              | 7619.12              | 6939.50               | 204.72                      | 0.28                  | 0.449           |
| BRSWM1       | 15454.66              | 0.00                 | 1059.20             | 7627.17              | 6853.37               | 723.72                      | 1.00                  | 0.443           |
| BRSWM2       | 15454.66              | 19250.81             | 1707.07             | 8318.19              | 24837.39              | 1515.09                     | 2.10                  | 0.716           |
| BRSWM3       | 15454.66              | 0.00                 | 1176.44             | 7019.39              | 7348.56               | 1174.31                     | 1.53                  | 0.475           |
| EXT3         | 15454.66              | 0.00                 | 429.51              | 12219.06             | 2843.68               | 522.96                      | 1.42                  | 0.184           |
| EXTW         | 15454.66              | 0.00                 | 225.91              | 13801.71             | 1446.36               | 266.28                      | 0.88                  | 0.094           |
| EXN          | 15454.66              | 0.00                 | 829.64              | 9724.21              | 4969.94               | 1806.09                     | 3.42                  | 0.322           |
| EXTN         | 15454.66              | 0.00                 | 291.86              | 13568.73             | 1625.97               | 387.31                      | 1.79                  | 0.105           |
| EXW1         | 15454.66              | 4003.33              | 1239.31             | 9215.03              | 9082.42               | 6730.11                     | 10.83                 | 0.467           |
| LIDPilot     | 15454.66              | 0.00                 | 1071.37             | 12605.69             | 1847.52               | 214.31                      | 0.85                  | 0.120           |

| Subcatchment | LID Control    | Total<br>Inflow<br>mm | Evap<br>Loss<br>mm | Infil<br>Loss<br>mm | Surface<br>Outflow<br>mm | Drain<br>Outflow<br>mm | Init.<br>Storage<br>mm | Final<br>Storage<br>mm | Pcnt.<br>Error |
|--------------|----------------|-----------------------|--------------------|---------------------|--------------------------|------------------------|------------------------|------------------------|----------------|
| LIDPilot     | Bioswale       | 43966.33              | 18626.92           | 25324.93            | 181.73                   | 0.00                   | 37.42                  | 52.50                  | -0.41          |
| LIDPilot     | VegetatedSwale | 43966.33              | 609.36             | 27476.93            | 16272.75                 |                        | 0.00                   | 0.00                   | -0.89          |

| Node           | Type     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | Occi | of Max<br>urrence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------|
| 2              | JUNCTION | 0.02                       | 0.70                       | 1.00                     | 7    | 14:30                       |
| 1              | JUNCTION | 0.02                       | 0.70                       | 1.70                     | 7    | 14:23                       |
| 5              | JUNCTION | 0.00                       | 0.31                       | 5.31                     | 3623 | 17:00                       |
| 6              | JUNCTION | 0.00                       | 0.39                       | 3.39                     | 3623 | 17:00                       |
| WesternOutfall | OUTFALL  | 0.01                       | 0.64                       | 0.64                     | 3653 | 22:00                       |
| EasternOutfall | OUTFALL  | 0.00                       | 0.39                       | 1.39                     | 3623 | 17:00                       |

Maximum Maximum Lateral Total
Lateral Total Time of Max Inflow Inflow

| Node           | Туре     | Inflow<br>CMS | Inflow<br>CMS | Occurr<br>days hr |      | Volume<br>10^6 ltr | Volume<br>10^6 ltr |
|----------------|----------|---------------|---------------|-------------------|------|--------------------|--------------------|
| 2              | JUNCTION | 0.883         | 5.521         | 3653 2            | 2:00 | 266.277            | 7533.958           |
| 1              | JUNCTION | 12.822        | 12.822        | 3623 1            | 7:00 | 7354.793           | 7354.793           |
| 5              | JUNCTION | 3.416         | 3.416         | 3623 1            | 7:00 | 1806.085           | 1806.085           |
| 6              | JUNCTION | 1.788         | 5.205         | 3623 1            | 7:00 | 387.307            | 2193.094           |
| WesternOutfall | OUTFALL  | 0.000         | 5.520         | 3653 2            | 2:00 | 0.000              | 7534.084           |
| EasternOutfall | OUTFALL  | 0.000         | 5.192         | 3623 1            | 7:00 | 0.000              | 2193.124           |

Surcharging occurs when water rises above the top of the highest conduit.

 Max. Height
 Min. Depth

 Hours
 Above Crown
 Below Rim

 Node
 Type
 Surcharged
 Meters
 Meters

 2
 JUNCTION
 9.21
 0.000
 0.000

 1
 JUNCTION
 10.40
 0.000
 0.000

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

| Outfall Node   | Flow  | Avg.  | Max.   | Total    |
|----------------|-------|-------|--------|----------|
|                | Freq. | Flow  | Flow   | Volume   |
|                | Pcnt. | CMS   | CMS    | 10^6 ltr |
| WesternOutfall | 27.80 | 0.049 | 5.520  | 7534.084 |
| EasternOutfall | 20.36 | 0.020 | 5.192  | 2193.124 |
| System         | 24.08 | 0.069 | 10.512 | 9727.208 |

| Link     | Туре    | Maximum<br> Flow <br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|----------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------|
| Western2 | CHANNEL | 5.520                    | 3653 | 22:00                      | 2.81                        | 0.91                 | 0.92                  |
| Eastern1 | CHANNEL | 3.418                    | 3623 | 17:00                      | 7.16                        | 0.06                 | 0.24                  |
| Eastern2 | CHANNEL | 5.192                    | 3623 | 17:00                      | 8.04                        | 0.09                 | 0.30                  |
| Western1 | CHANNEL | 4.767                    | 694  | 22:55                      | 2.37                        | 1.03                 | 1.00                  |

|          |           |            |          | Hours       | Hours    |
|----------|-----------|------------|----------|-------------|----------|
|          |           | Hours Full |          | Above Full  | Capacity |
| Conduit  | Both Ends | Upstream   | Dnstream | Normal Flow | Limited  |
|          |           |            |          |             |          |
| Western1 | 8.93      | 10.30      | 9.21     | 10.43       | 10.30    |

Analysis ended on: Thu Feb 19 13:40:05 2015 Total elapsed time: 00:08:06

Page 7 SWMM 5

```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
    ****************
Analysis Options
Flow Units ..... CMS
Process Models:
  Rainfall/Runoff ..... YES
  Snowmelt ..... NO
  Groundwater ..... NO
  Flow Routing ...... YES Ponding Allowed ..... NO
  Water Quality ..... NO
Infiltration Method ..... GREEN_AMPT
Flow Routing Method ..... KINWAVE
Starting Date ..... AUG-01-1996 00:00:00
Ending Date ..... JAN-01-2014 06:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:15:00
Wet Time Step ..... 00:15:00
Dry Time Step ..... 01:00:00
Routing Time Step ...... 30.00 sec
******
Rainfall File Summary
*******
Station First Last Recording Periods Periods Periods ID Date Date Frequency w/Precip Missing Malfunc.
         AUG-08-1996 DEC-31-2013 60 min 28488
*******
                               Volume
                                             Depth
                             hectare-m
                                           mm
Runoff Ouantity Continuity
Initial LID Storage ... 0.019
Total Precipitation ... 3595.989
Evaporation Loss ... 216.887
Infiltration Loss ... 2940.633
Surface Runoff ... 456.481
Final Surface Storage ... 0.031
Continuity Error (%)
                               0.019 0.080
3595.989 15454.656
216.887 932.127
                                         12638.100
                                         1961.841
                                             0.131
*******
                               Volume
                                            Volume
Flow Routing Continuity
                             hectare-m
                                          10^6 ltr
                             -----
                                            0.000
Dry Weather Inflow .....
                             0.000
Wet Weather Inflow .....
                              456.481
                                          4564.860
Groundwater Inflow .....
                              0.000
                                           0.000
RDII Inflow .....
External Inflow .....
                             448.180
                                 0.000
                                              0.000
                                         4481.848
88 099
External Outflow .....
                                          88.099
0.000
0.000
Internal Outflow .....
                               8.810
                                0.000
0.000
0.000
Storage Losses .....
Initial Stored Volume ....
```

Page 1 SWMM 5

-0.111

0.000

Final Stored Volume .....

Continuity Error (%) .....

\*\*\*\*\*\*\*\*

All links are stable.

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 15454.66              | 0.00                 | 423.97              | 12215.04             | 2853.71               | 410.37                      | 1.14                  | 0.185           |
| EXT2         | 15454.66              | 0.00                 | 978.90              | 7619.12              | 6939.50               | 204.72                      | 0.28                  | 0.449           |
| BRSWM1       | 15454.66              | 0.00                 | 1059.20             | 7627.17              | 6853.37               | 723.72                      | 1.00                  | 0.443           |
| BRSWM2       | 15454.66              | 19250.81             | 1815.05             | 17223.55             | 15992.65              | 975.56                      | 2.02                  | 0.461           |
| BRSWM3       | 15454.66              | 0.00                 | 1176.44             | 7019.39              | 7348.56               | 1174.31                     | 1.53                  | 0.475           |
| EXT3         | 15454.66              | 0.00                 | 429.51              | 12219.06             | 2843.68               | 522.96                      | 1.42                  | 0.184           |
| EXTW         | 15454.66              | 0.00                 | 225.91              | 13801.71             | 1446.36               | 266.28                      | 0.88                  | 0.094           |
| EXN          | 15454.66              | 0.00                 | 1006.34             | 12565.80             | 1966.78               | 714.73                      | 3.35                  | 0.127           |
| EXTN         | 15454.66              | 0.00                 | 291.86              | 13568.73             | 1625.97               | 387.31                      | 1.79                  | 0.105           |
| EXW          | 15454.66              | 2830.25              | 1297.57             | 13831.86             | 3249.15               | 2786.16                     | 10.97                 | 0.178           |

| Subcatchment | LID Control    | Total<br>Inflow<br>mm | Evap<br>Loss<br>mm | Infil<br>Loss<br>mm | Surface<br>Outflow<br>mm | Drain<br>Outflow<br>mm | Init.<br>Storage | Final<br>Storage<br>mm | Po<br>Er |
|--------------|----------------|-----------------------|--------------------|---------------------|--------------------------|------------------------|------------------|------------------------|----------|
| EXN          | Bioswale       | 56429.29              | 19857.31           | 36578.34            | 446.95                   | 0.00                   | 37.42            | 52.50                  | - (      |
| EXN          | VegetatedSwale | 56429.29              | 718.10             | 25231.23            | 30756.14                 | 0.00                   | 0.00             | 0.00                   | - (      |
| EXW          | Bioswale       | 181894.96             | 22853.49           | 143355.88           | 17553.99                 | 0.00                   | 37.42            | 52.51                  | - ]      |
| EXW          | VegetatedSwale | 181894.96             | 758.14             | 52437.61            | 129195.83                | 0.00                   | 0.00             | 0.00                   | - (      |

| Node           | Туре     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | 0cci | of Max<br>urrence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------|
| 2              | JUNCTION | 0.01                       | 0.70                       | 1.00                     | 7    | 14:41                       |
| 1              | JUNCTION | 0.01                       | 0.70                       | 1.70                     | 7    | 14:36                       |
| 5              | JUNCTION | 0.00                       | 0.31                       | 5.31                     | 3623 | 17:00                       |
| 6              | JUNCTION | 0.00                       | 0.39                       | 3.39                     | 3623 | 17:00                       |
| WesternOutfall | OUTFALL  | 0.01                       | 0.64                       | 0.64                     | 3653 | 22:00                       |
| EasternOutfall | OUTFALL  | 0.00                       | 0.39                       | 1.39                     | 3623 | 17:00                       |

| Node                                  | Type                                                | Maximum<br>Lateral<br>Inflow<br>CMS                 | Maximum<br>Total<br>Inflow<br>CMS                   | 0ccui                                        | of Max<br>rrence<br>nr:min                         | Lateral<br>Inflow<br>Volume<br>10^6 ltr                     | Total<br>Inflow<br>Volume<br>10^6 ltr                               |
|---------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|
| 2 1 5 6 WesternOutfall EasternOutfall | JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL | 0.883<br>12.115<br>3.351<br>1.788<br>0.000<br>0.000 | 5.521<br>12.115<br>3.351<br>5.137<br>5.520<br>5.132 | 3653<br>3623<br>3623<br>3623<br>3653<br>3653 | 22:00<br>17:00<br>17:00<br>17:00<br>22:00<br>17:00 | 266.277<br>3196.524<br>714.731<br>387.307<br>0.000<br>0.000 | 3380.094<br>3196.524<br>714.731<br>1101.718<br>3380.210<br>1101.617 |

Surcharging occurs when water rises above the top of the highest conduit.

Flooding refers to all water that overflows a node, whether it ponds or not.

| Node | Hours<br>Flooded | Maximum<br>Rate<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Total<br>Flood<br>Volume<br>10^6 ltr | Maximum<br>Ponded<br>Volume<br>1000 m3 |
|------|------------------|------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| 1    | 9.14             | 7.434                  | 3623 17:00                               | 88.099                               | 0.000                                  |

|                                  | Flow<br>Freq.  | Avg.<br>Flow   | Max.<br>Flow   | Total<br>Volume      |
|----------------------------------|----------------|----------------|----------------|----------------------|
| Outfall Node                     | Pcnt.          | CMS            | CMS            | 10^6 ltr             |
| WesternOutfall<br>EasternOutfall | 26.31<br>20.43 | 0.023<br>0.010 | 5.520<br>5.132 | 3380.210<br>1101.617 |
| System                           | 23.37          | 0.033          | 10.452         | 4481.828             |

| Link                                | Туре    | Maximum<br> Flow <br>CMS | 0ccu | of Max<br>rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|-------------------------------------|---------|--------------------------|------|----------------------------|-----------------------------|----------------------|-----------------------|
| Western2 Eastern1 Eastern2 Western1 | CHANNEL | 5.520                    | 3653 | 22:00                      | 2.81                        | 0.91                 | 0.92                  |
|                                     | CHANNEL | 3.349                    | 3623 | 17:00                      | 7.10                        | 0.06                 | 0.24                  |
|                                     | CHANNEL | 5.132                    | 3623 | 17:00                      | 8.00                        | 0.09                 | 0.30                  |
|                                     | CHANNEL | 4.765                    | 6216 | 00:02                      | 2.29                        | 1.03                 | 1.00                  |

Conduit Surcharge Summary

|          |           |            |          | Hours       | Hours    |
|----------|-----------|------------|----------|-------------|----------|
|          |           | Hours Full |          | Above Full  | Capacity |
| Conduit  | Both Ends | Upstream   | Dnstream | Normal Flow | Limited  |
|          |           |            |          |             |          |
| Western1 | 8.05      | 9.05       | 8.25     | 9.27        | 9.05     |

Analysis begun on: Wed Feb 18 17:47:32 2015 Analysis ended on: Wed Feb 18 17:55:47 2015 Total elapsed time: 00:08:15

Page 4 SWMM 5

```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
**************
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
Analysis Options
Flow Units ..... CMS
Process Models:
 Rainfall/Runoff ..... YES
 Snowmelt ...... NO
 Groundwater ..... NO
 Flow Routing ..... YES Ponding Allowed ..... NO
 Water Quality ..... NO
Infiltration Method ..... GREEN_AMPT
Flow Routing Method ..... KINWAVE
Starting Date ..... AUG-01-1996 00:00:00
Ending Date ..... SEP-01-1996 06:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ...... 00:15:00
Wet Time Step ..... 00:15:00
Dry Time Step ..... 01:00:00
Routing Time Step ..... 30.00 sec
```

WARNING 01: wet weather time step reduced to recording interval for Rain Gage 1

\*\*\*\*\*\*\*\*\*\*
Element Count
\*\*\*\*\*\*\*\*\*

| Name | Data Source |           | Recording<br>Interval |
|------|-------------|-----------|-----------------------|
| 1    | 100year     | INTENSITY | 10 min.               |

| Name     | Area  | Width   | %Imperv | %Slope | Rain Gage | Outlet |
|----------|-------|---------|---------|--------|-----------|--------|
| EXT1     | 14.38 | 2000.00 | 20.00   | 2.0000 | <br>1     | 1      |
| EXT2     | 2.95  | 2000.00 | 50.00   | 2.0000 | 1         | EXW1   |
| BRSWM1   | 10.56 | 2000.00 | 50.00   | 2.0000 | 1         | EXW1   |
| BRSWM2   | 6.10  | 2000.00 | 74.00   | 2.0000 | 1         | EXW1   |
| BRSWM3   | 15.98 | 2000.00 | 54.00   | 2.0000 | 1         | BRSWM2 |
| EXT3     | 18.39 | 2043.00 | 20.00   | 2.0000 | 1         | EXW1   |
| EXTW     | 18.41 | 1473.00 | 10.00   | 2.0000 | 1         | 2      |
| EXN      | 36.34 | 3028.00 | 35.40   | 2.0000 | 1         | 5      |
| EXTN     | 23.82 | 2382.00 | 10.00   | 2.0000 | 1         | 6      |
| EXW1     | 74.10 | 3920.00 | 51.50   | 2.0000 | 1         | 1      |
| LIDPilot | 11.60 | 500.00  | 39.00   | 2.0000 | 1         | 1      |

| Subcatchment | LID Control    | No. of<br>Units | Unit<br>Area | Unit<br>Width | % Area<br>Covered | % Imperv<br>Treated |
|--------------|----------------|-----------------|--------------|---------------|-------------------|---------------------|
| LIDPilot     | Bioswale       | 5               | 250.00       | 6.00          | 1.08              | 15.00               |
| LIDPilot     | VegetatedSwale | 5               | 250.00       | 6.00          | 1.08              | 15.00               |

| Name           | Type     | Invert<br>Elev. | Max.<br>Depth | Ponded<br>Area | External<br>Inflow |
|----------------|----------|-----------------|---------------|----------------|--------------------|
| 2              | JUNCTION | 0.30            | 0.70          | 0.0            |                    |
| 1              | JUNCTION | 1.00            | 0.70          | 0.0            |                    |
| 5              | JUNCTION | 5.00            | 1.30          | 0.0            |                    |
| 6              | JUNCTION | 3.00            | 1.30          | 0.0            |                    |
| WesternOutfall | OUTFALL  | 0.00            | 0.70          | 0.0            |                    |
| EasternOutfall | OUTFALL  | 1.00            | 1.30          | 0.0            |                    |

| Name     | From Node | To Node        | Type    | Length | %Slope R | oughness |
|----------|-----------|----------------|---------|--------|----------|----------|
| Western2 | 2         | WesternOutfall | CONDUIT | 100.0  | 0.3000   | 0.0100   |
| Eastern1 | 5         | 6              | CONDUIT | 50.0   | 4.0032   | 0.0100   |
| Eastern2 | 6         | EasternOutfall | CONDUIT | 50.0   | 4.0032   | 0.0100   |
| Western1 | 1         | 2              | CONDUIT | 400.0  | 0.1750   | 0.0100   |

| Conduit  | Shape    | Full<br>Depth | Full<br>Area | Hyd.<br>Rad. | Max.<br>Width | No. of<br>Barrels | Full<br>Flow |
|----------|----------|---------------|--------------|--------------|---------------|-------------------|--------------|
| Western2 | Western2 | 0.70          | 2.35         | 0.32         | 7.00          | 1                 | 6.07         |
| Eastern1 | Eastern1 | 1.30          | 4.00         | 0.59         | 6.00          | 1                 | 56.19        |
| Eastern2 | Eastern2 | 1.30          | 4.00         | 0.59         | 6.00          | 1                 | 56.19        |
| Western1 | Western1 | 0.70          | 2.35         | 0.32         | 7.00          | 1                 | 4.64         |

0.2862

0.4400

Transect Western1 Area: 0.0209 0.0008 0.0033 0.0075 0.0133 0.0300 0.0409 0.0529 0.0654 0.0784 0.0918 0.1057 0.1200 0.1347 0.1499 0.1655 0.1816 0.1981 0.2151 0.2325 0.2504 0.2687 0.2874 0.3066 0.3262 0.3878 0.3463 0.3668 0.4092 0.4311 0.5471 0.4534 0.4761 0.4993 0.5230 0.5716 0.5966 0.6220 0.6478 0.6742 0.7009 0.7281 0.7558 0.7848 0.8158 0.8488 0.8837 0.9205 0.9593 1.0000 Hrad: 0.0214 0.0428 0.0643 0.0857 0.1071 0.1285 0.1499 0.1840 0.2531 0.2191

0.3183

0.4689

0.3497

0.4973

SWMM 5 Page 2

0.3804

0.5253

0.4105 0.5529

| Width:      | 0.5801                                                                                           | 0.6069                                                                                           | 0.6334                                                                                           | 0.6596                                                                                           | 0.6855                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|             | 0.7111                                                                                           | 0.7365                                                                                           | 0.7617                                                                                           | 0.7867                                                                                           | 0.8114                                                                                           |
|             | 0.8360                                                                                           | 0.8603                                                                                           | 0.8845                                                                                           | 0.9086                                                                                           | 0.9325                                                                                           |
|             | 0.9563                                                                                           | 0.9799                                                                                           | 1.0034                                                                                           | 1.0268                                                                                           | 1.0500                                                                                           |
|             | 1.0732                                                                                           | 1.0962                                                                                           | 1.1156                                                                                           | 1.1135                                                                                           | 1.1117                                                                                           |
|             | 1.1103                                                                                           | 1.1093                                                                                           | 1.1090                                                                                           | 1.1093                                                                                           | 1.0000                                                                                           |
| "I'dell'    | 0.0400                                                                                           | 0.0800                                                                                           | 0.1200                                                                                           | 0.1600                                                                                           | 0.2000                                                                                           |
|             | 0.2400                                                                                           | 0.2800                                                                                           | 0.2949                                                                                           | 0.3055                                                                                           | 0.3162                                                                                           |
|             | 0.3269                                                                                           | 0.3375                                                                                           | 0.3482                                                                                           | 0.3589                                                                                           | 0.3695                                                                                           |
|             | 0.3802                                                                                           | 0.3909                                                                                           | 0.4015                                                                                           | 0.4122                                                                                           | 0.4229                                                                                           |
|             | 0.4335                                                                                           | 0.4442                                                                                           | 0.4549                                                                                           | 0.4655                                                                                           | 0.4762                                                                                           |
|             | 0.4869                                                                                           | 0.4975                                                                                           | 0.5082                                                                                           | 0.5189                                                                                           | 0.5295                                                                                           |
|             | 0.5402                                                                                           | 0.5509                                                                                           | 0.5615                                                                                           | 0.5722                                                                                           | 0.5829                                                                                           |
|             | 0.5935                                                                                           | 0.6042                                                                                           | 0.6149                                                                                           | 0.6255                                                                                           | 0.6362                                                                                           |
|             | 0.6469                                                                                           | 0.6575                                                                                           | 0.6733                                                                                           | 0.7200                                                                                           | 0.7667                                                                                           |
|             | 0.8133                                                                                           | 0.8600                                                                                           | 0.9067                                                                                           | 0.9533                                                                                           | 1.0000                                                                                           |
| Transect W  | estern2                                                                                          |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
| Area:       | 0.0008                                                                                           | 0.0033                                                                                           | 0.0075                                                                                           | 0.0133                                                                                           | 0.0209                                                                                           |
|             | 0.0300                                                                                           | 0.0409                                                                                           | 0.0529                                                                                           | 0.0654                                                                                           | 0.0784                                                                                           |
|             | 0.0918                                                                                           | 0.1057                                                                                           | 0.1200                                                                                           | 0.1347                                                                                           | 0.1499                                                                                           |
|             | 0.1655                                                                                           | 0.1816                                                                                           | 0.1981                                                                                           | 0.2151                                                                                           | 0.2325                                                                                           |
|             | 0.2504                                                                                           | 0.2687                                                                                           | 0.2874                                                                                           | 0.3066                                                                                           | 0.3262                                                                                           |
|             | 0.3463                                                                                           | 0.3668                                                                                           | 0.3878                                                                                           | 0.4092                                                                                           | 0.4311                                                                                           |
|             | 0.4534                                                                                           | 0.4761                                                                                           | 0.4993                                                                                           | 0.5230                                                                                           | 0.5471                                                                                           |
|             | 0.5716                                                                                           | 0.5966                                                                                           | 0.6220                                                                                           | 0.6478                                                                                           | 0.6742                                                                                           |
|             | 0.7009                                                                                           | 0.7281                                                                                           | 0.7558                                                                                           | 0.7848                                                                                           | 0.8158                                                                                           |
| Hrad:       | 0.8488                                                                                           | 0.8837                                                                                           | 0.9205                                                                                           | 0.9593                                                                                           | 1.0000                                                                                           |
| widele.     | 0.0214                                                                                           | 0.0428                                                                                           | 0.0643                                                                                           | 0.0857                                                                                           | 0.1071                                                                                           |
|             | 0.1285                                                                                           | 0.1499                                                                                           | 0.1840                                                                                           | 0.2191                                                                                           | 0.2531                                                                                           |
|             | 0.2862                                                                                           | 0.3183                                                                                           | 0.3497                                                                                           | 0.3804                                                                                           | 0.4105                                                                                           |
|             | 0.4400                                                                                           | 0.4689                                                                                           | 0.4973                                                                                           | 0.5253                                                                                           | 0.5529                                                                                           |
|             | 0.5801                                                                                           | 0.6069                                                                                           | 0.6334                                                                                           | 0.6596                                                                                           | 0.6855                                                                                           |
|             | 0.7111                                                                                           | 0.7365                                                                                           | 0.7617                                                                                           | 0.7867                                                                                           | 0.8114                                                                                           |
|             | 0.8360                                                                                           | 0.8603                                                                                           | 0.8845                                                                                           | 0.9086                                                                                           | 0.9325                                                                                           |
|             | 0.9563                                                                                           | 0.9799                                                                                           | 1.0034                                                                                           | 1.0268                                                                                           | 1.0500                                                                                           |
|             | 1.0732                                                                                           | 1.0962                                                                                           | 1.1156                                                                                           | 1.1135                                                                                           | 1.1117                                                                                           |
|             | 1.1103                                                                                           | 1.1093                                                                                           | 1.1090                                                                                           | 1.1093                                                                                           | 1.0000                                                                                           |
| Width:      | 0.0400<br>0.2400<br>0.3269<br>0.3802<br>0.4335<br>0.4869<br>0.5402<br>0.5935<br>0.6469<br>0.8133 | 0.0800<br>0.2800<br>0.3375<br>0.3909<br>0.4442<br>0.4975<br>0.5509<br>0.6042<br>0.6575<br>0.8600 | 0.1200<br>0.2949<br>0.3482<br>0.4015<br>0.4549<br>0.5082<br>0.5615<br>0.6149<br>0.6733<br>0.9067 | 0.1600<br>0.3055<br>0.3589<br>0.4122<br>0.4655<br>0.5189<br>0.5722<br>0.6255<br>0.7200<br>0.9533 | 0.2000<br>0.3162<br>0.3695<br>0.4229<br>0.4762<br>0.5295<br>0.5829<br>0.6362<br>0.7667           |
| Transect Ea | astern1                                                                                          |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
|             | 0.0068<br>0.0491<br>0.1056<br>0.1761<br>0.2607<br>0.3591<br>0.4697<br>0.5923<br>0.7271<br>0.8739 | 0.0141<br>0.0593<br>0.1186<br>0.1919<br>0.2793<br>0.3802<br>0.4932<br>0.6183<br>0.7555<br>0.9047 | 0.0220<br>0.0700<br>0.1321<br>0.2083<br>0.2985<br>0.4019<br>0.5173<br>0.6448<br>0.7843           | 0.0305<br>0.0813<br>0.1462<br>0.2252<br>0.3182<br>0.4240<br>0.5418<br>0.6717<br>0.8137<br>0.9677 | 0.0395<br>0.0932<br>0.1609<br>0.2427<br>0.3384<br>0.4466<br>0.5668<br>0.6991<br>0.8435<br>1.0000 |
| Hrad:       | 0.0417                                                                                           | 0.0796                                                                                           | 0.1145                                                                                           | 0.1472                                                                                           | 0.1779                                                                                           |
|             | 0.2072                                                                                           | 0.2353                                                                                           | 0.2623                                                                                           | 0.2884                                                                                           | 0.3139                                                                                           |
|             | 0.3387                                                                                           | 0.3629                                                                                           | 0.3867                                                                                           | 0.4101                                                                                           | 0.4331                                                                                           |
|             | 0.4558                                                                                           | 0.4782                                                                                           | 0.5004                                                                                           | 0.5223                                                                                           | 0.5440                                                                                           |
|             | 0.5656                                                                                           | 0.5870                                                                                           | 0.6082                                                                                           | 0.6310                                                                                           | 0.6536                                                                                           |

| Width:              | 0.6761<br>0.7853<br>0.8908<br>0.9934<br>1.0939                                                   | 0.6983<br>0.8067<br>0.9115<br>1.0137<br>1.1138                                                   | 0.7203<br>0.8279<br>0.9321<br>1.0338<br>1.1337                                                   | 0.7422<br>0.8490<br>0.9526<br>1.0539<br>1.1535                                                   | 0.7638<br>0.8699<br>0.9731<br>1.0740<br>1.0000                                                   |
|---------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| width.              | 0.1811<br>0.2533<br>0.3256<br>0.3978<br>0.4700<br>0.5362<br>0.5981<br>0.6600<br>0.7219<br>0.7838 | 0.1956<br>0.2678<br>0.3400<br>0.4122<br>0.4844<br>0.5486<br>0.6105<br>0.6724<br>0.7343<br>0.7962 | 0.2100<br>0.2822<br>0.3544<br>0.4267<br>0.4989<br>0.5610<br>0.6229<br>0.6848<br>0.7467<br>0.8086 | 0.2244<br>0.2967<br>0.3689<br>0.4411<br>0.5114<br>0.5733<br>0.6352<br>0.6971<br>0.7590<br>0.8210 | 0.2389<br>0.3111<br>0.3833<br>0.4556<br>0.5238<br>0.5857<br>0.6476<br>0.7095<br>0.7714           |
| Transect E<br>Area: | Eastern2                                                                                         |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
| Hrad:               | 0.0068<br>0.0491<br>0.1056<br>0.1761<br>0.2607<br>0.3591<br>0.4697<br>0.5923<br>0.7271<br>0.8739 | 0.0141<br>0.0593<br>0.1186<br>0.1919<br>0.2793<br>0.3802<br>0.4932<br>0.6183<br>0.7555<br>0.9047 | 0.0220<br>0.0700<br>0.1321<br>0.2083<br>0.2985<br>0.4019<br>0.5173<br>0.6448<br>0.7843<br>0.9360 | 0.0305<br>0.0813<br>0.1462<br>0.2252<br>0.3182<br>0.4240<br>0.5418<br>0.6717<br>0.8137<br>0.9677 | 0.0395<br>0.0932<br>0.1609<br>0.2427<br>0.3384<br>0.4466<br>0.5668<br>0.6991<br>0.8435<br>1.0000 |
| niau.               | 0.0417<br>0.2072<br>0.3387<br>0.4558<br>0.5656<br>0.6761<br>0.7853<br>0.8908<br>0.9934<br>1.0939 | 0.0796<br>0.2353<br>0.3629<br>0.4782<br>0.5870<br>0.6983<br>0.8067<br>0.9115<br>1.0137<br>1.1138 | 0.1145<br>0.2623<br>0.3867<br>0.5004<br>0.6082<br>0.7203<br>0.8279<br>0.9321<br>1.0338<br>1.1337 | 0.1472<br>0.2884<br>0.4101<br>0.5223<br>0.6310<br>0.7422<br>0.8490<br>0.9526<br>1.0539<br>1.1535 | 0.1779<br>0.3139<br>0.4331<br>0.5440<br>0.6536<br>0.7638<br>0.8699<br>0.9731<br>1.0740           |
| Width:              | 0.1811<br>0.2533<br>0.3256<br>0.3978<br>0.4700<br>0.5362<br>0.5981<br>0.6600<br>0.7219<br>0.7838 | 0.1956<br>0.2678<br>0.3400<br>0.4122<br>0.4844<br>0.5486<br>0.6105<br>0.6724<br>0.7343<br>0.7962 | 0.2100<br>0.2822<br>0.3544<br>0.4267<br>0.4989<br>0.5610<br>0.6229<br>0.6848<br>0.7467<br>0.8086 | 0.2244<br>0.2967<br>0.3689<br>0.4411<br>0.5114<br>0.5733<br>0.6352<br>0.6971<br>0.7590<br>0.8210 | 0.2389<br>0.3111<br>0.3833<br>0.4556<br>0.5238<br>0.5857<br>0.6476<br>0.7095<br>0.7714<br>1.0000 |
| Transect W          | Western                                                                                          |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |
| Area:               | 0.0008<br>0.0300<br>0.0918<br>0.1655<br>0.2504<br>0.3463<br>0.4534<br>0.5716<br>0.7009<br>0.8488 | 0.0033<br>0.0409<br>0.1057<br>0.1816<br>0.2687<br>0.3668<br>0.4761<br>0.5966<br>0.7281           | 0.0075<br>0.0529<br>0.1200<br>0.1981<br>0.2874<br>0.3878<br>0.4993<br>0.6220<br>0.7558<br>0.9205 | 0.0133<br>0.0654<br>0.1347<br>0.2151<br>0.3066<br>0.4092<br>0.5230<br>0.6478<br>0.7848<br>0.9593 | 0.0209<br>0.0784<br>0.1499<br>0.2325<br>0.3262<br>0.4311<br>0.5471<br>0.6742<br>0.8158           |
| Hrad:               | 0.0214<br>0.1285<br>0.2862<br>0.4400<br>0.5801<br>0.7111                                         | 0.0428<br>0.1499<br>0.3183<br>0.4689<br>0.6069<br>0.7365                                         | 0.0643<br>0.1840<br>0.3497<br>0.4973<br>0.6334<br>0.7617                                         | 0.0857<br>0.2191<br>0.3804<br>0.5253<br>0.6596<br>0.7867                                         | 0.1071<br>0.2531<br>0.4105<br>0.5529<br>0.6855<br>0.8114                                         |

|                          | 0.8360                 | 0.8603  | 0.8845           | 0.9086            | 0.9325           |
|--------------------------|------------------------|---------|------------------|-------------------|------------------|
|                          | 0.9563                 | 0.9799  | 1.0034           | 1.0268            | 1.0500           |
|                          | 1.0732                 | 1.0962  | 1.1156           | 1.1135            | 1.1117           |
| **** 1.1 .               | 1.1103                 | 1.1093  | 1.1090           | 1.1093            | 1.0000           |
| Width:                   | 0 0400                 | 0 0000  | 0 1000           | 0 1600            | 0 2000           |
|                          | 0.0400<br>0.2400       | 0.0800  | 0.1200<br>0.2949 | 0.1600<br>0.3055  | 0.2000<br>0.3162 |
|                          | 0.3269                 | 0.2300  | 0.3482           | 0.3589            | 0.3102           |
|                          | 0.3802                 | 0.3373  | 0.4015           | 0.4122            | 0.4229           |
|                          | 0.4335                 | 0.4442  | 0.4549           | 0.4655            | 0.4762           |
|                          | 0.4869                 | 0.4975  | 0.5082           | 0.5189            | 0.5295           |
|                          | 0.5402                 | 0.5509  | 0.5615           | 0.5722            | 0.5829           |
|                          | 0.5935                 | 0.6042  | 0.6149           | 0.6255            | 0.6362           |
|                          | 0.6469                 | 0.6575  | 0.6733           | 0.7200            | 0.7667           |
|                          | 0.8133                 | 0.8600  | 0.9067           | 0.9533            | 1.0000           |
|                          |                        |         |                  |                   |                  |
|                          |                        |         | _                |                   |                  |
|                          | ******                 |         | Volume           | Depth             |                  |
| Runoff Quan              | tity Contin            | uity    | hectare-m        | mm                |                  |
|                          | Storage                |         | 0.005            | 0.020             |                  |
|                          | pitation               |         | 16.681           | 71.708            |                  |
|                          | Loss                   |         | 0.230            | 0.987             |                  |
|                          | n Loss                 |         | 6.886            | 29.601            |                  |
| Surface Run              | off                    |         | 9.873            | 42.442            |                  |
| Final Surfa              | ce Storage             |         | 0.000            | 0.000             |                  |
| Continuity               | Error (%) .            |         | -1.815           |                   |                  |
|                          |                        |         |                  |                   |                  |
|                          |                        |         | _                | _                 |                  |
|                          | ******                 |         | Volume           | Volume            |                  |
|                          | g Continuit<br>******  |         | hectare-m        | 10 <b>^</b> 6 ltr |                  |
|                          | Inflow                 |         | 0.000            | 0.000             |                  |
| -                        | Inflow                 |         | 9.873            | 98.734            |                  |
|                          | Inflow                 |         | 0.000            | 0.000             |                  |
|                          |                        |         | 0.000            | 0.000             |                  |
|                          | flow                   |         | 0.000            | 0.000             |                  |
| External Ou              | tflow                  |         | 5.682            | 56.826            |                  |
| Internal Ou              | tflow                  |         | 4.200            | 41.996            |                  |
|                          | ses                    |         | 0.000            | 0.000             |                  |
|                          | red Volume             |         | 0.000            | 0.000             |                  |
|                          | d Volume               |         | 0.000            | 0.000             |                  |
| Continuity               | Error (%) .            | • • • • | -0.088           |                   |                  |
|                          |                        |         |                  |                   |                  |
| ******                   | *****                  | *****   | **               |                   |                  |
|                          | w Instabili            |         |                  |                   |                  |
| *****                    | *****                  | *****   | **               |                   |                  |
| All links a              | re stable.             |         |                  |                   |                  |
|                          |                        |         |                  |                   |                  |
|                          |                        |         |                  |                   |                  |
|                          | ******                 |         |                  |                   |                  |
| Routing Tim              | ne Step Summ<br>****** | ary     |                  |                   |                  |
| ************ Minimum Tim |                        | ***     | 30.00 sec        |                   |                  |
| Average Tim              |                        | :       |                  |                   |                  |
| Maximum Tim              |                        | :       | 30.00 sec        |                   |                  |
|                          | Steady Stat            |         | 0.00             |                   |                  |
|                          | rations per            |         |                  |                   |                  |
|                          | 1 1.01                 | E       |                  |                   |                  |
|                          |                        |         |                  |                   |                  |
|                          | ******                 |         |                  |                   |                  |
|                          | t Runoff Su            |         |                  |                   |                  |
| ******                   | *****                  | ****    |                  |                   |                  |
|                          |                        |         |                  |                   |                  |

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 71.71                 | 0.00                 | 0.69                | 35.76                | 37.21                 | 5.35                        | 4.21                  | 0.519           |

| EXT2     | 71.71 | 0.00   | 0.78 | 20.77 | 51.42  | 1.52  | 1.35  | 0.717 |
|----------|-------|--------|------|-------|--------|-------|-------|-------|
| BRSWM1   | 71.71 | 0.00   | 0.84 | 21.46 | 51.16  | 5.40  | 4.43  | 0.713 |
| BRSWM2   | 71.71 | 136.98 | 1.16 | 14.51 | 193.77 | 11.82 | 7.27  | 0.929 |
| BRSWM3   | 71.71 | 0.00   | 0.90 | 20.03 | 52.29  | 8.36  | 6.50  | 0.729 |
| EXT3     | 71.71 | 0.00   | 0.69 | 36.38 | 36.36  | 6.69  | 4.93  | 0.507 |
| EXTW     | 71.71 | 0.00   | 0.89 | 49.47 | 21.93  | 4.04  | 1.79  | 0.306 |
| EXN      | 71.71 | 0.00   | 0.99 | 25.94 | 46.23  | 16.80 | 11.36 | 0.645 |
| EXTN     | 71.71 | 0.00   | 0.94 | 37.90 | 34.12  | 8.13  | 4.18  | 0.476 |
| EXW1     | 71.71 | 34.31  | 1.08 | 25.03 | 81.06  | 60.07 | 27.51 | 0.765 |
| LIDPilot | 71.71 | 0.00   | 1.70 | 34.11 | 37.48  | 4.35  | 1.88  | 0.523 |

| Total | Evap | Infil | Surface | Drain | Init. | Final | Potential | Potenti

Node Depth Summary

| Node           | Туре     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | Occi | of Max<br>irrence<br>hr:min |
|----------------|----------|----------------------------|----------------------------|--------------------------|------|-----------------------------|
| 2              | JUNCTION | 0.00                       | 0.70                       | 1.00                     | 0    | 01:00                       |
| 1              | JUNCTION | 0.00                       | 0.70                       | 1.70                     | 0    | 00:57                       |
| 5              | JUNCTION | 0.00                       | 0.58                       | 5.58                     | 0    | 01:10                       |
| 6              | JUNCTION | 0.00                       | 0.67                       | 3.67                     | 0    | 01:10                       |
| WesternOutfall | OUTFALL  | 0.00                       | 0.70                       | 0.70                     | 0    | 01:10                       |
| EasternOutfall | OUTFALL  | 0.00                       | 0.67                       | 1.67                     | 0    | 01:10                       |

| Node           | Type                                | Maximum<br>Lateral<br>Inflow<br>CMS | Maximum<br>Total<br>Inflow<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Lateral<br>Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr |
|----------------|-------------------------------------|-------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------|
| 2              | JUNCTION JUNCTION JUNCTION JUNCTION | 1.788                               | 6.425                             | 0 01:10                                  | 4.038                                   | 31.969                                |
| 1              |                                     | 33.506                              | 33.506                            | 0 01:10                                  | 69.766                                  | 69.766                                |
| 5              |                                     | 11.355                              | 11.355                            | 0 01:10                                  | 16.802                                  | 16.802                                |
| 6              |                                     | 4.175                               | 15.470                            | 0 01:10                                  | 8.128                                   | 24.929                                |
| WesternOutfall | OUTFALL                             | 0.000                               | 6.220                             | 0 01:17                                  | 0.000                                   | 31.896                                |
| EasternOutfall | OUTFALL                             |                                     | 15.395                            | 0 01:10                                  | 0.000                                   | 24.930                                |

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Туре     |      | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|------|----------|------|--------------------------------------|-----------------------------------|
| 2    | JUNCTION | 0.95 | 0.000                                | 0.000                             |
| 1    | JUNCTION | 0.98 | 0.000                                | 0.000                             |

Flooding refers to all water that overflows a node, whether it ponds or not.

|      |         |         |             | Total             | Maximum |
|------|---------|---------|-------------|-------------------|---------|
|      |         | Maximum | Time of Max | Flood             | Ponded  |
|      | Hours   | Rate    | Occurrence  | Volume            | Volume  |
| Node | Flooded | CMS     | days hr:min | 10 <b>^</b> 6 ltr | 1000 m3 |
|      |         |         |             |                   |         |
| 2    | 0.15    | 0.339   | 0 01:10     | 0.090             | 0.000   |
| 1    | 0.98    | 28.675  | 0 01:10     | 41.905            | 0.000   |

 Maximum
 Time of Max Occurrence (Ploc)
 Maximum Max/ Full
 Max/ Full
 Maximum Occurrence (Ploc)
 Max/ Full
 Full

| Hours | Hours | Hours | Capacity | Conduit | Both Ends | Upstream | Dnstream | Dnstream | Normal Flow | Limited | Limited | Western2 | 0.10 | 0.14 | 0.11 | 0.16 | 0.14 | Western1 | 0.93 | 0.97 | 0.95 | 0.99 | 0.97 |

Analysis begun on: Thu Feb 19 13:46:10 2015 Analysis ended on: Thu Feb 19 13:46:10 2015

Total elapsed time: < 1 sec

not just on results from each reporting time step.

Flow Units CMS
Process Models:
Rainfall/Runoff YES
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed NO

Water Quality ...... NO
Infiltration Method ..... GREEN\_AMPT
Flow Routing Method ..... KINWAVE

Antecedent Dry Days .... 0.0

Report Time Step .... 00:15:00

Wet Time Step .... 00:15:00

Dry Time Step .... 01:00:00

Routing Time Step .... 30.00 sec

WARNING 01: wet weather time step reduced to recording interval for Rain Gage 1

| *******                    | Volume    | Depth  |
|----------------------------|-----------|--------|
| Runoff Quantity Continuity | hectare-m | mm     |
| *******                    |           |        |
| Initial LID Storage        | 0.019     | 0.080  |
| Total Precipitation        | 16.685    | 71.708 |
| Evaporation Loss           | 0.265     | 1.137  |
| Infiltration Loss          | 7.330     | 31.503 |
| Surface Runoff             | 9.430     | 40.529 |
| Final Surface Storage      | 0.000     | 0.000  |
| Continuity Error (%)       | -1.925    |        |
|                            |           |        |

| **************************************                         | Volume<br>hectare-m      | Volume<br>10^6 ltr        |
|----------------------------------------------------------------|--------------------------|---------------------------|
| Dry Weather Inflow Wet Weather Inflow                          | 0.000                    | 0.000<br>94.305           |
| Groundwater Inflow  RDII Inflow  External Inflow               | 0.000<br>0.000<br>0.000  | 0.000<br>0.000<br>0.000   |
| External Outflow                                               | 5.432<br>4.019<br>0.000  | 54.316<br>40.188<br>0.000 |
| Initial Stored Volume Final Stored Volume Continuity Error (%) | 0.000<br>0.000<br>-0.212 | 0.000                     |

Minimum Time Step : 30.00 sec
Average Time Step : 30.00 sec
Maximum Time Step : 30.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| EXT1         | 71.71                 | 0.00                 | 0.69                | 35.76                | 37.21                 | 5.35                        | 4.21                  | 0.519           |
| EXT2         | 71.71                 | 0.00                 | 0.78                | 20.77                | 51.42                 | 1.52                        | 1.35                  | 0.717           |
| BRSWM1       | 71.71                 | 0.00                 | 0.84                | 21.46                | 51.16                 | 5.40                        | 4.43                  | 0.713           |
| BRSWM2       | 71.71                 | 136.98               | 1.22                | 16.50                | 191.37                | 11.67                       | 5.82                  | 0.917           |
| BRSWM3       | 71.71                 | 0.00                 | 0.90                | 20.03                | 52.29                 | 8.36                        | 6.50                  | 0.729           |
| EXT3         | 71.71                 | 0.00                 | 0.69                | 36.38                | 36.36                 | 6.69                        | 4.93                  | 0.507           |
| EXTW         | 71.71                 | 0.00                 | 0.89                | 49.47                | 21.93                 | 4.04                        | 1.79                  | 0.306           |
| EXN          | 71.71                 | 0.00                 | 1.48                | 28.94                | 43.12                 | 15.67                       | 7.89                  | 0.601           |
| EXTN         | 71.71                 | 0.00                 | 0.94                | 37.90                | 34.12                 | 8.13                        | 4.18                  | 0.476           |
| EXW          | 71.71                 | 29.48                | 1.36                | 30.01                | 71.27                 | 61.12                       | 24.22                 | 0.704           |

LID Performance Summary

| Total | Evap | Infil | Surface | Drain | Init. | Final | Potential | Potenti

| Node                                  | Туре                           | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | 0cci        | of Max<br>urrence<br>hr:min |
|---------------------------------------|--------------------------------|----------------------------|----------------------------|--------------------------|-------------|-----------------------------|
| 2<br>1<br>5                           | JUNCTION JUNCTION JUNCTION     | 0.00<br>0.00<br>0.00       | 0.70<br>0.70<br>0.48       | 1.00<br>1.70<br>5.48     | 0<br>0<br>0 | 01:03<br>01:01<br>01:10     |
| 6<br>WesternOutfall<br>EasternOutfall | JUNCTION<br>OUTFALL<br>OUTFALL | 0.00<br>0.00<br>0.00       | 0.60<br>0.70<br>0.60       | 3.60<br>0.70<br>1.60     | 0<br>0<br>0 | 01:10<br>01:10<br>01:10     |
|                                       |                                |                            |                            |                          |             |                             |

Node Inflow Summary

|      |          | Maximum | Maximum |             | Lateral           | Total             |
|------|----------|---------|---------|-------------|-------------------|-------------------|
|      |          | Lateral | Total   | Time of Max | Inflow            | Inflow            |
|      |          | Inflow  | Inflow  | Occurrence  | Volume            | Volume            |
| Node | Type     | CMS     | CMS     | days hr:min | 10 <b>^</b> 6 ltr | 10 <b>^</b> 6 ltr |
| 2    | JUNCTION | 1.788   | 6.425   | 0 01:10     | 4.038             | 30.590            |

| 1              | JUNCTION | 26.108 | 26.108 | 0 | 01:20 | 66.468 | 66.468 |
|----------------|----------|--------|--------|---|-------|--------|--------|
| 5              | JUNCTION | 7.885  | 7.885  | 0 | 01:10 | 15.671 | 15.671 |
| 6              | JUNCTION | 4.175  | 12.010 | 0 | 01:10 | 8.128  | 23.799 |
| WesternOutfall | OUTFALL  | 0.000  | 6.220  | 0 | 01:17 | 0.000  | 30.517 |
| EasternOutfall | OUTFALL  | 0.000  | 12.026 | 0 | 01:10 | 0.000  | 23.799 |

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Type     | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |
|------|----------|---------------------|--------------------------------------|-----------------------------------|
| 2    | JUNCTION | 1.03                | 0.000                                | 0.000                             |
| 1    | JUNCTION | 1.05                | 0.000                                | 0.000                             |

Flooding refers to all water that overflows a node, whether it ponds or not.

| Node | Hours<br>Flooded | Maximum<br>Rate<br>CMS | Time of Max<br>Occurrence<br>days hr:min | Total<br>Flood<br>Volume<br>10^6 ltr | Maximum<br>Ponded<br>Volume<br>1000 m3 |
|------|------------------|------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| 2    | 0.15<br>1.05     | 0.339<br>21.401        | 0 01:10<br>0 01:20                       | 0.090<br>40.098                      | 0.000                                  |

|                                  | Flow<br>Freq. | Avg.<br>Flow   | Max.<br>Flow    | Total<br>Volume   |
|----------------------------------|---------------|----------------|-----------------|-------------------|
| Outfall Node                     | Pcnt.         | CMS            | CMS             | 10 <b>^</b> 6 ltr |
| WesternOutfall<br>EasternOutfall | 1.12<br>0.96  | 1.010<br>0.921 | 6.220<br>12.026 | 30.517<br>23.799  |
| System                           | 1.04          | 1.932          | 18.128          | 54.316            |

| Link                             | Type                          | Maximum<br> Flow <br>CMS | Time of Max<br>Occurrence<br>days hr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|----------------------------------|-------------------------------|--------------------------|------------------------------------------|-----------------------------|----------------------|-----------------------|
| Western2<br>Eastern1<br>Eastern2 | CHANNEL<br>CHANNEL<br>CHANNEL | 6.220<br>7.878<br>12.026 | 0 01:17<br>0 01:10<br>0 01:10            | 2.82<br>9.02<br>10.08       | 1.02<br>0.14<br>0.21 | 1.00<br>0.37<br>0.46  |
| Western1                         | CHANNEL                       | 4.751                    | 0 02:07                                  | 2.29                        | 1.02                 | 1.00                  |

\_\_\_\_\_\_

|                      |           | Hours Full   |              | Hours<br>Above Full | Hours<br>Capacity |
|----------------------|-----------|--------------|--------------|---------------------|-------------------|
| Conduit              | Both Ends | Upstream     | Dnstream     | Normal Flow         | Limited           |
| Western2<br>Western1 | 0.10      | 0.14<br>1.04 | 0.11<br>1.03 | 0.16<br>1.08        | 0.14              |

Analysis begun on: Thu Feb 19 13:45:02 2015 Analysis ended on: Thu Feb 19 13:45:02 2015 Total elapsed time: < 1 sec

Page 4 SWMM 5